講演番号:244 文献番号:20216244

学術講演会予稿集正誤表 (Errata of Proceedings)

学術講演会セッション	【セッション No.】135
	【セッション No.】135 【セッション名】塗料・接着剤
番号・セッション名	
(SessionNoSession Name)	【講演番号】244
講演タイトル	高張力鋼板とアルミニウム合金板の接着・
(Title)	クリンチング接合強度の予測
	Strength prediction for clinch-bonding of
	advanced high strength steel and aluminum
	alloy
講演者名	秋田 麗佳
(Speaker name)	Reika Akita
所属名	伊藤忠テクノソリューションズ(株)
(Affiliation)	Itochu Techno-Solutions Corporation
誤	P.3 3.2 右段上から 6 行目
(Incorrect)	ピール応力 T は先端応力 S と同じ
正	P.3 3.2 右段上から 6 行目
(Correct)	ピール応力 T はせん断応力 S と同じ
誤	P.4 4 左段下から 4 行目
(Incorrect)	図9に、この3つの接合構造の有限要素モ
	デルとこれにより計算された引張-せん断
	荷重-変位曲線を示す.3つの解析結果でほ
	ぼ同じピーク荷重を得られ,クリンチボン
	ディングの数が接合強度にほとんど影響を
	与えないことがわかる.
正	P.4 4 左段下から 4 行目
(Correct)	図9に、この2つの接合構造の有限要素モ
	デルとこれにより計算された引張-せん断
	荷重-変位曲線を示す.2つの解析結果でほ
	 ぼ同じピーク荷重を得られ,クリンチボン
	 ディングの数が接合強度にほとんど影響を
	与えないことがわかる.
	• · = =· • · · • · • • · • • · • • · • • · • • · • • · • • · • • · • • · •

学術講演会予稿集正誤表

(Errata of Summarized Papers)

学術講演会セッション	【セッション No.】135
番号・セッション名	【セッション名】塗料・接着剤
(SessionNoSession Name)	【講演番号】244
講演タイトル	高張力鋼板とアルミニウム合金板の接着・
(Title)	クリンチング接合強度の予測
Summarized Paper	Strength prediction for clinch-bonding of
	advanced high strength steel and aluminum
	alloy
講演者名	秋田 麗佳
(Speaker name)	Reika Akita
所属名	伊藤忠テクノソリューションズ (株)
(Affiliation)	Itochu Techno-Solutions Corporation
誤	P.1 下から 4 行目
(Incorrect)	1, 2 and 4 clinchig joints exhibited
正	P.1 下から 4 行目
(Correct)	1 and 2 clinchig joints exhibited

講演番号:272 文献番号:20216272

学術講演会予稿集正誤表

(Errata of Proceedings/Summarized Papers)

学術講演会セッション 番号・セッション名 (SessionNoSession Name)	141-1 振動騒音乗り心地 IV
講演タイトル (Title)	摩擦によるエネルギ流入に着目した低自由度複素固 有値解析によるブレーキ鳴き予測技術
講演者名 (Speaker name)	加川 宙 (東京農工大学大学院) 鎌田 崇義 (東京農工大学) 井上 映・中野目 葵 (日立 Astemo)
所属名 (Affiliation)	
誤 (Incorrect)	4ページ左中段部
	$\{u\} \begin{Bmatrix} x_{\#i} \\ y_{\#i} \\ z_{\#i} \end{Bmatrix} = \begin{Bmatrix} X_{\#i} \\ Y_{\#i} \\ Z_{\#i} \end{Bmatrix} - \begin{Bmatrix} x \\ y \\ z \end{Bmatrix} \begin{Bmatrix} X_{\#i} \\ Y_{\#i} \\ Z_{\#i} \end{Bmatrix} \times \begin{Bmatrix} \theta_x \\ \theta_y \\ \theta_z \end{Bmatrix}$
Œ (Correct)	$ \begin{cases} x_{\#i} \\ y_{\#i} \\ z_{\#i} \end{cases} = \begin{cases} X_{\#i} \\ Y_{\#i} \\ Z_{\#i} \end{cases} + \begin{cases} x \\ y \\ z \end{cases} - \begin{cases} X_{\#i} \\ Y_{\#i} \\ Z_{\#i} \end{cases} \times \begin{cases} \theta_x \\ \theta_y \\ \theta_z \end{cases} $

学術講演会運営事務局 j<u>sae@gakkai-web.net</u> 宛にご提出ください。 (Please send to <u>jsae@gakkai-web.net</u>)