(Errata of Proceedings/Summarized Papers)

学術講演会セッション	セッション No.89 -ノッキング
番号・セッション名	(Session No.89 - Knocking)
(SessionNoSession	
Name)	
講演タイトル	ノッキング検出精度向上に向けた検出周波数最適化
(Title)	と検証結果
	(Knock Detection Frequency Optimization and
	Experimental Validation for Enhanced Knock
	Detection Accuracy)
講演者名	仁木 智哉 (Tomoya Niki)
(Speaker name)	
所属名	株式会社 SUBARU (SUBARU CORPORATION)
(Affiliation)	
誤	$DT = MED + STD \times C \tag{1}$
(Incorrect)	$KDTL = MED_{k1} + STD_{k1} \times C_{k1} $ (2)
	$FDTL = MED_{k0} + STD_{k0} \times C_{k0} $ (3)
	$SN_{P.O.A.} = 10 \log_{10} \sum_{i}^{n} (10^{(SN_i/10)})$ (4)
正	$DT = MAX - MED = STD \times C \tag{5}$
(Correct)	$KDTL = MAX_{k1} - MED_{k1} = STD_{k1} \times C_{k1} $ (6)
	$FDTL = MAX_{k0} - MED_{k0} = STD_{k0} \times C_{k0} $ (7)
	$SN_{P.O.A.} = 10 \log_{10} \Sigma (10^{(SN_i/10)})$ (8)

(Errata of Proceedings/Summarized Papers)

学術講演会セッション 番号・セッション名 (SessionNoSession Name)	セッション No.93 セッション名 潤滑油・潤滑剤
講演タイトル	ルールベース手法を用いたギヤピッチングの検出手
(Title)	法(Detection Method for Gear Pitting Using a Rule-
	Based Approach)
講演者名	秋口 隼之丞
(Speaker name)	(Junnosuke Akiguchi)
所属名	ENEOS
(Affiliation)	
誤	パワースペクトル
(Incorrect)	(power spectrum)
正	フーリエスペクトル
(Correct)	(fourier spectrum)

(Errata of Proceedings/Summarized Papers)

学術講演会セッション	セッション No. : 98
番号・セッション名	セッション名:金属材料 [
(SessionNoSession	
Name)	
Name/	
講演タイトル	コールドスプレーバルブシートの材料開発
(Title)	
講演者名	伊澤 佳典
(Speaker name)	
所属名	日産自動車株式会社
(Affiliation)	
誤	(1)P.1 主題 (英)
(Incorrect)	「Material development for cold spray valve seat」
	(2)P.1 右 19 行目
	「体状態として、さらに時効処理を行い、軟化させた状態
	でコールドスプレーに供し、ガスタービンエンジンの」
	(3)P.1 右 22 行目
	「粉末に対して溶体化処理や焼き入れ処理、時効処理な
	どの」
	(4)P.2 右 Table1
	「Cu-14Ni-3Si-1.5Fe-2V-2Cr-1Al <mark>-0.5P</mark> 」
	(5)P.3 左 Fig.4
	「Consition:MR16DDT」
	(6)P.5 右 4 行目
	「に複合被膜 CL3 と基材とした Al 合金 A5056 材(Cu-
	5Mg-0.1Mn-0.1Cr)の界面の」
正	(1)P.1 主題 (英)
(Correct)	「Material Development for Cold Spray Valve Seat」
	(2) P.1 右 19 行目
	「体状態として軟化させた状態でコールドスプレーに供
	し、成膜後に時効処理を行い、ガスタービンの」
	(3)P.1 右 22 行目
	「粉末に対して溶体化処理や焼き入れ処理などの」
	(4)P.2 右 Table1
	「Cu-14Ni-3Si-1.5Fe-2V-2Cr-1Al」
	(5)P.3 左 Fig.4
	Condition: MR16DDT
	(6)P.5 右 4行目
	「に複合被膜 CL3 と基材とした Al 合金 A5056 材(Al-
	5Mg-0.1Mn-0.1Cr)の界面の」

(Errata of Proceedings/ $\frac{Summarized\ Papers}{}$)

学術講演会セッション 番号・セッション名 (SessionNoSession Name)	No.102 車両の運動と制御 III
講演タイトル	車両運動特性の変化がドライバーの運転操作に与え
(Title)	る影響の解析
講演者名	前田 義紀
(Speaker name)	トヨタ自動車
所属名	
(Affiliation)	
誤 (Incorrect)	$J = \int_0^T \left[\delta + \tau_L \frac{d\delta}{dt} + h \left\{ y + \tau_L \frac{dy}{dt} - y_{OL} \right\} \right]^2 dt$
正 (Correct)	$J = \int_0^T \left[\delta + \tau_L \frac{d\delta}{dt} + h \left\{ y + \tau_h \frac{dy}{dt} - y_{OL} \right\} \right]^2 dt$

(Errata of Proceedings/Summarized Papers)

学術講演会セッション 番号・セッション名 (SessionNoSession Name)	セッション No.119 車体開発Ⅲ
講演タイトル (Title)	カーネル QA を用いたフレーム断面形状の最適化
講演者名 (Speaker name) 所属名 (Affiliation)	霜田 航 マツダ株式会社
誤 (Incorrect)	P1. 左列 下より 4 行目から 2 行目 $x = [A_x, A_y, B_x, B_y, C_x, C_y, D_x, E_x, E_y, F_x, F_y, G_x]$ で表される 12 次元のベクトルである.
	P2. 右列 上より 4 行目から 5 行目 P2. 左列 上より 7 行目から 8 行目 P4. 左列 上より 14 行目 P4. 左列 上より 29 行目から 30 行目 説明変数xの各成分A _x , A _y ,, G _x
	$ \mathbf{M} = [\mathbf{A}_x, \mathbf{A}_y, \dots, \mathbf{G}_x] = \begin{bmatrix} A_x^{(1)} & A_y^{(1)} & \cdots & G_x^{(1)} \\ A_x^{(2)} & A_y^{(2)} & \cdots & G_x^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ A_x^{(95)} & A_y^{(95)} & \cdots & G_x^{(95)} \end{bmatrix} $
	P4. 右列(14)式 $x^{q} = [\langle q_{1}, A_{x} \rangle, \langle q_{2}, A_{y} \rangle, \cdots, \langle q_{12}, G_{x} \rangle]^{t}$
IE (Correct)	P1. 左列 下より 4 行目から 2 行目 $x = [A_x, A_y, B_x, B_y, C_x, C_y, D_x, E_x, E_y, F_x, F_y, G_y]$ で表される 12 次元のベクトルである.
	P2. 右列 上より 4 行目から 5 行目 P2. 左列 上より 7 行目から 8 行目 P4. 左列 上より 14 行目 P4. 左列 上より 29 行目から 30 行目 説明変数xの各成分A _x ,A _y ,,G _y
	P4. 右列(12)式
	$M = [A_x, A_y, \dots, G_y] = \begin{bmatrix} A_x^{(1)} & A_y^{(1)} & \cdots & G_y^{(1)} \\ A_x^{(2)} & A_y^{(2)} & \cdots & G_y^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ A_x^{(95)} & A_y^{(95)} & \cdots & G_y^{(95)} \end{bmatrix}$

P4. 左列(14)式 $x^{q} = [\langle q_{1}, A_{x} \rangle, \langle q_{2}, A_{y} \rangle, \cdots, \langle q_{12}, \frac{G_{y}}{G_{y}} \rangle]^{t}$

(Errata of Proceedings/Summarized Papers)

学術講演会セッション 番号・セッション名	No.123
(SessionNoSession Name)	通信・エレクトロニクス I -設計・開発-
講演タイトル (Title)	SDV 時代におけるプリント配線板の耐湿寿命設計と 耐湿試験の再定義
講演者名	堀川 敦
(Speaker name)	
所属名	日産自動車
(Affiliation)	
誤	Table. 4
(Incorrect)	1,474E+04
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
正 (Correct)	1.474E+04

(Errata of Proceedings/Summarized Papers)

学術講演会セッション 番号・セッション名 (SessionNoSession Name)	日時:10/16(木)午前 セッション番号:123 セッション名:通信・エレクトロニクス I -設計・開発-
講演タイトル (Title)	高密度実装電子部品のはんだ剥離現象の解析と設計 指針の提案
講演者名	柴田靖文
(Speaker name)	
所属名	
(Affiliation)	
誤	Table1 Solder metal used for experiment
(Incorrect)	スペルミス 4 カ所 Lerge
正	Large
(Correct)	

(Errata of Proceedings/Summarized Papers)

学術講演会セッション 番号・セッション名 (SessionNoSession Name)	No.126 振動・騒音・乗り心地 V
講演タイトル (Title)	電動パワートレインの騒音低減に向けた 3in1 化と EV 専用プラットフォームへの最適化
講演者名 (Speaker name) 所属名 (Affiliation)	新井 和彦 日産自動車株式会社
誤 (Incorrect)	Fig.6 Coil winding for excitaion force reduction (conceptual scheme)
正 (Correct)	Fig.6 Coil winding for excitation force reduction (conceptual scheme)

(Errata of Proceedings/Summarized Papers)

学術講演会セッション 番号・セッション名 (SessionNoSession Name)	No.133 水素エンジン I
講演タイトル (Title)	モーターサイクル用水素エンジンの噴射方式がシリ ンダライナの瞬時熱流束に与える影響
講演者名 (Speaker name)	横森 蒼司
所属名 (Affiliation)	東京都市大学大学院
誤 (Incorrect)	脚注箇所 5) 株式会社本田技術研究所(埼玉県和光市中央 1-4-1)
正 (Correct)	脚注箇所 5) 本田技研工業株式会社(105-8404 東京都港区虎ノ 門 2-2-3)

(Errata of Proceedings/Summarized Papers)

学術講演会セッション	セッション番号: 139
番号・セッション名	セッション名:ガスエミッション
(SessionNoSession	
Name)	
 講演タイトル	ゼロエミッションに向けたパワートレーン技術開発
(Title)	(第1報)
講演者名	植田 啓仁
(Speaker name)	トヨタ自動車株式会社
所属名	
(Affiliation)	
誤	P.4 右 6 行目
(Incorrect)	ロジウム (Rh)
	P.4 右 17 行目(Table1 中)
	Rh
	P.4 右 24 行目
	ロジウム
	P.4 右 35 行目(Table2 中)
	Rh
正	P.4 右 6 行目
(Correct)	パラジウム (Pb)
	P.4 右 17 行目(Table1 中)
	Pb
	P.4 右 24 行目
	パラジウム
	P.4 右 35 行目(Table2 中)
	Pb

(Errata of Proceedings/Summarized Papers)

学術講演会セッション 番号・セッション名 (SessionNoSession Name)	セッション番号:144 セッション名:計測診断 I
講演タイトル (Title)	サロゲート AI を活用した解析プロセスの構築と実用 化
講演者名 (Speaker name)	上原一人
所属名 (Affiliation)	株式会社アイシン
誤 (Incorrect)	Eefficiency (Fig3,Fig5, Fig7) Errata of Proceedings (Fig3) Summarized Papers
正 (Correct)	Efficiency (Fig3,Fig5, Fig7) Errata of Proceedings (Fig3) Summarized Papers

(Errata of <u>Summarized Papers</u>)

学術講演会セッション 番号・セッション名 (SessionNoSession Name)	Session No.151 Visibility
講演タイトル (Title)	Outdoor Evaluation Experiment Under Daytime and Nighttime Conditions on Perception of Automated Driving System Marker Lamps (Second Report)
講演者名 (Speaker name) 所属名 (Affiliation)	Michiaki Sekine, Akihiro Abe, Yoko Kato, Yoshiro Aoki National Traffic Safety and Environment Laboratory
誤 (Incorrect)	Fig.5 Perception of luminous intensity modulation on outer marker lamps
正 (Correct)	Fig.5 Perception of luminous intensity modulation on inner marker lamps

(Errata of Proceedings)

学術講演会セッション 番号・セッション名 (SessionNoSession	セッション No. 151・視認性
Name)	
講演タイトル	パターニング前照灯による歩行者の被視認性向上に
(Title)	関する研究
講演者名	
(Speaker name)	<u>青木 義郎</u> 加藤 洋子 関根 道昭
所属名	(独)自動車技術総合機構交通安全環境研究所
(Affiliation)	
誤	de Bore スケールのグレア評価値の平均は、いずれも
(Incorrect)	4よりも大きい値(グレア許容範囲)となったが、許容
	限界(4 以下)を超える評価をした割合はハイビーム
	0%, パターニング前照灯 8%, ロービーム 29%となっ
	た.
正	de Boer スケールのグレア評価値の平均は、いずれも
(Correct)	4(許容限界)よりも大きい値となったが、4及びそれ
	よりも低い評価値の割合はロービーム 4% (24 名中 1
	名),パターニング前照灯29%(同7名),ハイビーム
	58%(同14名)となった.

学術講演会運営事務局 jsae@gakkai-web.net 宛にご提出ください。

(Please send to jsae@gakkai-web.net)

(Errata of Proceedings/Summarized Papers)

学術講演会セッション	【セッション No.】152
番号・セッション名	【セッション名】運転シート
(SessionNoSession	
Name)	
講演タイトル	超音波画像を用いた着座時の骨格推定
(Title)	
講演者名	天野 真輝
(Speaker name)	
所属名	株式会社 豊田中央研究所
(Affiliation)	
誤	
(Incorrect)	
	15
	z
	[mm]
	5
	15
	Many 0 0 x[mm] 15
	0 0
	(a)3D diagram
正	
(Correct)	150
	150
	z
	[mm]
	50 150
	150
	wimm)
	9 0 0
	(a)3D diagram
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(Errata of Proceedings/Summarized Papers)

学術講演会セッション	セッション番号: 154
番号・セッション名	セッション名:EV 開発 I
(SessionNoSession	
Name)	
講演タイトル	先読み情報を用いた電動商用車のエネルギマネジメ
(Title)	ント制御の開発
講演者名	松浦尚彦
(Speaker name)	日野自動車
所属名	
(Affiliation)	
誤	該当箇所:4頁
(Incorrect)	なお、先読み制御で使用する先読み情報は、走行パタ
	ーンを実測した日時の各時刻と位置において、ロケー
	タから取得できる精度の勾配情報、車速情報とし、制
	御更新周期である 1200s 毎に最新の値に更新されるも
	のとした.
正	なお、先読み制御で使用する情報は株式会社ゼンリン
(Correct)	提供のコンテンツを株式会社アイシンの技術で生成
	したもので、走行パターンを実測した日時の各時刻と
	位置において、ロケータから取得できる精度の勾配情
	報, 車速情報とし, 制御更新周期である 1200s 毎に最
	新の値に更新されるものとした.

(Errata of Proceedings/Summarized Papers)

学術講演会セッション 番号・セッション名 (SessionNoSession Name) 講演タイトル (Title) 講演者名 (Speaker name) 所属名 (Affiliation)	セッション No.156 自動運転・運転支援 高速道路合流シーンにおける組合せ最適化を活用し た軌道計画 大矢晃示 ミライズテクノロジーズ
・1 か所目 誤 (Incorrect)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
IE (Correct)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
・2か所目 誤 (Incorrect)	Real (ZTD) Probability N=6071 $ \begin{array}{cccccccccccccccccccccccccccccccccc$
IE (Correct)	Real (ZTD) Probability N=6071 $\Sigma + 4$ (ZTD) Probability N=6071 $\Sigma + 4$ SIM N=1000 $\Sigma + 4$ time[s] $\Sigma + 4$ t = 0 t = 4 t = 8 t = 12