(Errata of Proceedings/Summarized Papers)

学術講演会セッション 番号・セッション名	No.139 ガスエミッション
(SessionNoSession	33 177 17
Name)	
講演タイトル	ゼロエミッションに向けたパワートレーン技術開発
(Title)	(第1報)
講演者名	植田 啓仁
(Speaker name)	トヨタ自動車株式会社
所属名	
(Affiliation)	
誤	P.3 左 13 行目
(Incorrect)	$\tau = \eta L/u$
	P.3 左 18 行目
	η : Contact rate D_g : Gas Diffusion Coefficient η : Purification rate
正	P.3 左 13 行目
(Correct)	$\tau = L/u$
	–
	P.3 左 18 行目
	η : Contact rate D_g : Gas Diffusion Coefficient

学術講演会運営事務局 <u>jsae@gakkai-web.net</u> 宛にご提出ください。 (Please send to <u>jsae@gakkai-web.net</u>)

(Errata of Proceedings/Summarized Papers)

学術講演会セッション 番号・セッション名 (SessionNoSession Name)	No.146・複合材料・接合 I
講演タイトル (Title)	耐火構造の違いが繊維強化樹脂複合材料の力学特性 に及ぼす影響
講演者名 (Speaker name) 所属名 (Affiliation)	石原 裕介 岐阜大学
誤 (Incorrect)	(記載なし)
正 (Correct)	以下の謝辞を追加本研究成果の一部は、内閣府・ひろしまものづくりデジタルイノベーション創出プログラム・スマート蓄電池システム開発プロジェクトで得られたものである.ここに記して謝意を示す.

学術講演会運営事務局 <u>jsae@gakkai-web.net</u> 宛にご提出ください。 (Please send to <u>jsae@gakkai-web.net</u>)

(Errata of Proceedings/Summarized Papers)

	T				
学術講演会セ	セッション No.155	EV	開発 II		
ッション					
番号・セッショ	329 FI のターボハイブリッドエンジンの効率は 53%(計算値と実際値)				
ン名	(第3報)				
(SessionNo					
Session					
Name)					
講演タイトル (Title)	FI のターボハイブリッ	ッドエン	/ジンの効率は	53%(計算值。	と実際値)(第3報)
講演者名	藤井 修				
(Speaker	再生可能エネルギー	研究原	近 TRB		
name)					
所属名					
(Affiliation)					
誤	(変更前その1)				
(Incorrect)	2.3. 実際(MGU-H/K			•	
	分スロットルの時間もk	定数を	かけて(F/10)	・C・k%を全関	昇で走ったと置き換える。
	最大流量は 100kg/h だか	ゝら M=1	$00 \times (F/100)$	• C • k • T	
	$(F/100) \cdot C \cdot k \cdot T = 0$	M/100k	g)		
	(変更前その2)				
	3.2. 人造石油の長点	近2			
	Tab. 6 のように 2 円になる。詳細に検討すると日本で税金なしでガソリン				
	/エタノール=98 円/102 円、つまり輸送費 16 円、ブラジルでガソリン/エ				
	タノール=187 円/117 円、ブラジルの税金ガソリン/エタノール=60%				
	/25%から Tab. 5 のようになる。本体価格はガソリン/エタノール=82 円				
	/86 円になる。人造石油の場合水素と二酸化炭素からエタノールを第一段				
	階で作るので 86 円を	¥ 37. 5	で割ると2	円になる。	
	T 1 7 P 1 . (/	· a \			
	Tab.7 Fuel price (yen/	V)	D 11	Ţ.	\neg
			Brazil	Japan	_
	Gasoline		186	170	
	Shipping		16	16	_
	Brazilian Tax 609	%	112	72	
	Base Price		82	82	
	Ethanol		115		
	Shipping		0	16	
	Brazilian Tax 25	%	29		
	Base Price		86	86	
	Tab.6 Synthetic gasoline price (yen/Q) prediction		\neg		
	Base Price Base Price				
	shipping cost		s) yen/ℓ		
	Gasoline 82		_		
	Ethanol		86		
	Synthetic Gasoline		2		

(変更前その3)

4.1.1. 家庭の屋根に太陽電池をつけるのが1番で、<mark>片流がれ</mark>の屋根が良い。駐車場にソーラーをつけると効果がある。

(変更前その4)

Fig.3 が間違っています。

(変更前その5)

Fig.4 が間違っています。

(変更前その6)

2.4. 2005F1 (NA エンジン) の効率は30.5%

 $(e/100) \times M5 \cdot V = 930 \times 735.5 \times 60 \times 60 \times (F/100) C \cdot k \cdot T$

 $(e/100) \times M5 \cdot V = 930 \times 735.5 \times 60 \times 60 \times (M/100) ----(4)$

(4) と (1)の両辺をそれぞれで割ると

 $e = (930/853) \times (M/M5) (U/V) \times E$

e(2005F1) = 30.49 %

正

(Correct)

(変更後その1)

2.3. 実際(MGU-H/K 回生含める)効率 65.9 %

分スロットルの時間もk定数をかけて(F/100) ・C・k%を全開で走ったと置き換える。最大流量は100kg/h だからM=100×(F/100) ・C・k・T

 $(F/100) \cdot C \cdot k \cdot T = (M/100kg)$

(変更後その2)

3.2. 人造石油の長所 2

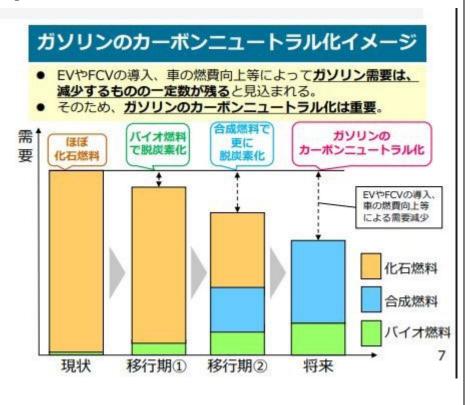
①政府がエタノールを推奨して、エタノール車が走り、生活に密着しているブラジルが参考になる。小売り価格は 115 円、税金が 25%。本体価格は 92 円となる。②ガソリン輸入国の場合、関税や輸送費がかかるので複雑になるからわかりにくい。生産国はわかりやすいが超生産国は参考にならない。ベネズエラは安すぎる。その理由は政府が補助金を出すからである。それで産油国でありながら補助金を出していないカナダ、USA とサウジアラビアが参考になる。この 3 国の平均をガソリン本体価格とする。③人造ガソリンは水と空気中の二酸化炭素と太陽電池のエネルギーで作るのでバイオエタノールの 1/37.5 の費用でエタノールを作れる。それで

Tab.7 Fuel price (yen/ℓ)

Fuel Type	Ethanol	Gasolme	Gasolme	Gasolme	Gasoline
Country Name	Brazil	Canada	USA	Saudi Arabia	average
Retail Price	115	168	133	99	133
Tax %	25	32	16	0	16
Tax	23	40	18	0	19
Base Price	92	128	115	99	114

人造ガソリンの価格は 1/37.5 の 3 円と推測する。

Tab.6 Synthetic gasoline base price (yen/l) prediction


Basa prica	(sacluding tag and shipping cost s)	yen/l
	Gasoline	114
Ethanol		92
Synthetic Gasoline		3
	Energy Committee Control Committee Control	

(変更箇所その3)

4.1.1. 家庭の屋根に太陽電池をつけるのが1番で、<mark>片流れ</mark>の屋根が良い。駐車場にソーラーをつけると効果がある。

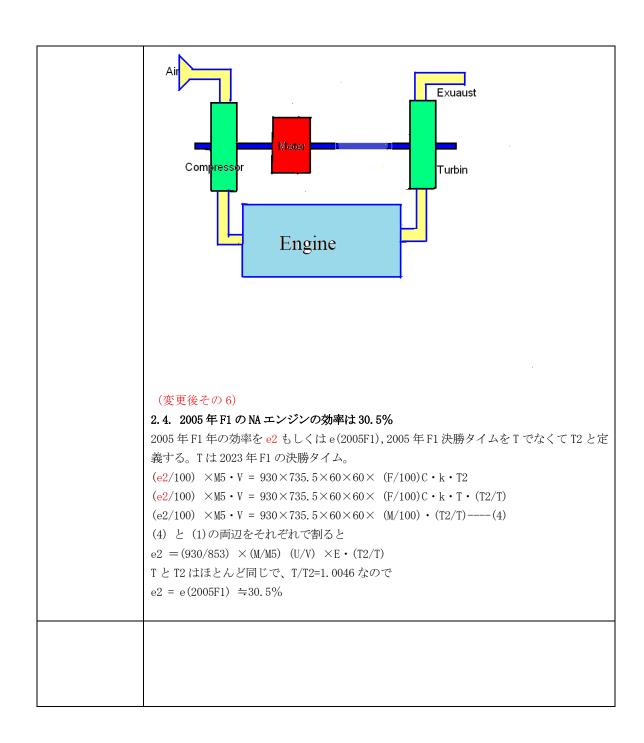

(変更箇所その4)

Fig.3

(変更箇所その5)

Fig.4

学術講演会運営事務局 <u>jsae@gakkai-web.net</u> 宛にご提出ください。 (Please send to <u>jsae@gakkai-web.net</u>)

(Errata of Proceedings/Summarized Papers)

学術講演会セッション	Session No.: 157
番号・セッション名	Session Title: Communications and Electronics II -
(SessionNoSession	Evaluation Technology and Cyber Security-
Name)	
講演タイトル	From Emissions to Cybersecurity: Navigating Euro
(Title)	7's New Compliance Landscape A Practical Path to
	Compliance through Strategic Adaptation of
	Existing Cybersecurity Frameworks
講演者名	Shin Li
(Speaker name)	Staff Engineer, Threat Research at VicOne
, 所属名	
(Affiliation)	
誤	Page 1
(Incorrect)	Table 1 TARA Methodologies Comparison
	"Data integrity breach" is 1 of several impact
	examples.
	Champion
	Page 2
	Section 4. Conclusion
	By reframing UNECE R155's TARA around Euro 7's
	outcome-based, environment-centric criteria and
	applying a Three-Tier Trust-Boundary, we found
	that all high-impact threats on a legacy Euro VI
	heavy-duty truck can be reduced to "Pass" or
	"Follow-up" status with an incremental bill-of-
	materials of roughly €20 per vehicle.
正	Page 1
(Correct)	Table 1 TARA Methodologies Comparison
(Correct)	"Data integrity breach" is one of several impact
	examples.
	examples.
	Page 2
	Section 4. Conclusion
	By reframing UNECE R155's TARA around Euro 7's
	outcome-based, environment-centric criteria and
	·
	applying a Three-Tier Trust-Boundary, we found
	that all high-impact threats on a legacy Euro VI
	heavy-duty truck can be reduced to "Pass" or
	"Follow-up" status with an incremental bill-of-
	materials of roughly €200 per vehicle.