Please log in

Paper / Information search system




Please log in

  • Summary & Details

Evaluation of a modular system topology for large-scale wireless EV charging in a commercial parking facility

Detailed Information

Category(E)Energy Transmission Systems to Vehicles and Global Warming I
Author(E)1) Giuseppe Guidi, 2) Salvatore D'Arco, 3) Jon Are Suul
Affiliation(E)1) SINTEF Energy Research, 2) SINTEF Energy Research, 3) SINTEF Energy Research / Norwegian University of Science and Technology
Abstract(E)This paper evaluates the operation of a modular transformer-less grid interface topology for large-scale wireless charging of electric vehicles (EVs) under a loading scenario for a commercial parking facility. The studied configuration is based on a Modular Multilevel Converter (MMC) topology where each module is supplying the wireless EV charger installed in one parking spot of a largescale charging infrastructure. Thus, the load distribution within this MMC-based topology depends on the location and charging demand of each EV. Furthermore, unbalanced loading imposes the need for introducing circulating currents to maintain stable operation of the topology. The additional losses caused by the circulating currents needed for load balancing are assessed for a realistic loading scenario during one day in a commercial parking facility. The presented numerical analysis identifies the impact on the conduction losses from an algorithm used to optimize the circulating current references. The resulting conduction losses are compared to an idealized case without need for balancing and to the continuous operation with constant circulating current corresponding to the worst-case load unbalance. Furthermore, the presented results identify the effect of the rated charging power on the loading scenario. The results show how operation with very low and unbalanced loading is causing high relative conduction losses. Thus, the studied MMC-based topology can be most effectively utilized in locations with a high average occupancy of the charging units or if active scheduling of the EV charging is introduced.

About search


How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".