Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

A Frequency-based Data Mining Approach to Enhance in-vehicle Network Intrusion Detection

Detailed Information

Author(E)1) Joakim Rosell, 2) Cristofer Englund, 3) Arash Vahidi, 4) Nishat I Mowla, 5) Ana Magazinius, 6) Eric Järpe
Affiliation(E)1) Department of Mobility and Systems, 2) Department of Mobility and Systems;Halmstad University, 3) Research Institutes of Sweden, 4) Department of Mobility and Systems, 5) Department of Mobility and Systems, 6) Halmstad University
Abstract(E)Modern vehicles have numerous electronic control units (ECUs) that constantly communicate over embedded in-vehicle networks (IVNs) comprised of controlled area network (CAN) segments. The simplicity and size-constrained 8-byte payload of the CAN bus technology makes it infeasible to integrate authenticity and integrity-based protection mechanisms. Thus, a malicious component will be able to inject malicious data into the network with minimal risk for detection. Such vulnerabilities have been demonstrated with various security attacks such as the flooding, fuzzing, and malfunction attacks. A practical approach to improve security in modern vehicles is to monitor the CAN bus traffic to detect anomalies. However, to administer such an intrusion detection system (IDS) with a general approach faces some challenges. First, the proprietary encodings of the CAN data fields need to be omitted as they are intellectual property of the original equipment manufacturers (OEMs) and differ across vehicle manufacturers and their models. Secondly, such general and practical IDS approach must also be computationally efficient in terms of speed and accuracy. Traditional IDSs for computer networks generally utilize a rule or signature-based approach. More recently, the approach of using machine learning (ML) with efficient feature representation has shown significant success because of faster detection and lower development and maintenance costs. Therefore, an efficient data aggregation technique with enhanced frequency-based feature representation to improve the performance of MLbased IDS for the IVNs is proposed. The performance gain was verified with the Survival Analysis Dataset for automobile IDS.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".