Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Efficiency Increase of a Conventional ICE Powertrain with CVT by 48V-Hybridization with Focus on L-Category Powersport Applications

Detailed Information

Author(E)1) Alexander Hagenberger, 2) Hans-Juergen Schacht, 3) Stephan Schmidt, 4) Roland Kirchberger
Affiliation(E)1) Graz University of Technology, 2) Graz University of Technology, 3) Graz University of Technology, 4) Graz University of Technology
Abstract(E)In recent years, E-mobility relevance has increased in the automotive sector, yet pure electric vehicles struggle to establish themselves in the still internal combustion engine (ICE) dominated sector of L-category and powersport applications. Battery electric hybrid L-category vehicles, as considered in this paper, combine both ICE and electric powertrains. Nowadays, numerous ICE L-category vehicles use rubber V-belt continuous variable transmissions (CVT) due to their reliability and user-friendliness, which often outweighs the drawback of relatively low efficiency. This paper not only aims to show, with the help of longitudinal dynamic simulation (LDS), how a state-of-the-art L-category ICE powertrain with special focus on the CVT can benefit from hybridization in terms of overall efficiency, but furthermore points out where the efficiency increase actually comes from and how this new knowledge can be implemented intelligently into a hybrid strategy. For this purpose, a Matlab/Simulink forward LDS model of the vehicle including all its powertrain components is built up. The research vehicle uses an uncontrolled centrifugal clutch (CC) located on the input shaft of the CVT. The hybrid module, consisting of a 48V E-motor, inverter and a battery, is added in parallel hybrid architecture (P3 configuration) between the CVT output and the driven wheel. In this study, load on the CVT is increased during ICE driving by using the E-motor as a generator, while charging the battery at the same time and using this energy for pure electric driving afterwards. This load point shifting strategy (LPS) proves to be especially beneficial during low vehicle speed driving, when both the ICE as well as the CVT load and thus their efficiency is low. The study shows fuel consumption benefits of 43% in the WMTC for the considered vehicle, calculated according to the legislative requirements. Furthermore, the final LPS hybrid strategy is also tested in other, real-world driving scenarios to prove its real-world applicability.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".