Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Suboptimal Online Energy Management for a Fuel Cell/Supercapacitor/ Battery Electric Vehicle Using Artificial Neural Network Approach

Detailed Information

Author(E)1) CHIEN-LIANG CHEN, 2) YI-HSUAN HUNG, 3) ZHU-YANG QIU
Affiliation(E)1) Department of Industrial Education, National Taiwan Normal University, Taipei, 106, Taiwan, 2) Undergraduate Program of Vehicle and Energy Engineering, National Taiwan Normal University, Taipei, 106, Taiwan, 3) Department of Industrial Education, National Taiwan Normal University, Taipei, 106, Taiwan
Abstract(E)This research aims at developing the suboptimal energy management strategy by using artificial neural network (ANN) for a triple-electrical-energy electric vehicle (EV). The controller hardware designs will be implemented in the future. Firstly, we constructed a low-order dynamic equations that abstracted the characteristics of the vehicle, including energy sources (the fuel cell, lithium battery, and supercapacitor), driver’s model, traction motor, transmission, and longitudinal vehicle dynamics, etc.. The key parameters were mostly retrieved from the commercialization software-Advanced Vehicle Simulator (ADVISOR). Base on the vehicle structure of the Toyota Mirai, we built the range-extended EV. The powertrain system included an 110kW fuel cell set, a 40Ah lithium-ion battery set, and a 165F/48V supercapacitor and a 150kW AC motor. The ECMS control strategy included a six-layer for-loop: the battery state-of-health (SOH), power demand, the battery state-of-charge (SOC𝑏), the supercapacitor state-of-charge (SOC𝑆𝐶), the power ratio of battery to power demand(α) and the power ratio of the supercapacitor to power demand(β). The ECMS data for ANN training was divided to two parts, the input part is four for-loop and the output part is α and β. To evaluated the benefit of the ANN, a rule-based (RB) control was designed as well. A standard driving cycle, New European Drive Cycle (NEDC), was chosen for the energy improvement evaluation. The energy consumption for RB and ECMS is [17.6258, 8.9141kWh], respectively, in two-time NEDC cycles. The energy improvement for ECMS is approximately 50% and the ANN accuracy is higher than 90%. The hybrid system can be scaled down to a small mobility in the near future.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".