Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Experimental and Numerical Analysis of an Outward Opening Injector Pintle Dynamics

Detailed Information

Author(E)1) Rodrigo Eguiluz, 2) Luke Stover, 3) Tommy Powell, 4) Tiago Costa, 5) Alexander Kopache, 6) Peter Hartman, 7) Joonsik Hwang, 8) Alexander Shkolnik
Affiliation(E)1) LiquidPiston Inc., 2) LiquidPiston Inc., 3) LiquidPiston Inc., 4) LiquidPiston Inc., 5) LiquidPiston Inc., 6) LiquidPiston Inc., 7) Mississippi State University, 8) LiquidPiston Inc.
Abstract(E)Direct injection strategies have been successfully used on spark ignited internal combustion engines for improving performance and reducing emissions. Among the different technologies available, outward opening injectors seem to have found their place in renewable applications running on gaseous fuels, including natural gas or hydrogen, as well as in a few specific liquid fuel applications.
In order to understand the key operating principles of these devices, their limitations and the resulting sprays, it is necessary to accurately describe the pintle dynamics. The pintle’s relative position with respect to the injector body defines the internal flow geometry and therefore the injection rates and spray characteristics.
In this paper both numerical and experimental investigations of the dynamics of an outward opening injector pintle have been carried out. The injector average flow rates and instantaneous pintle position have been experimentally measured at a variety of pressures and injection durations using air as the working fluid. In addition to the experimental measurements, the injector internals were thoroughly measured and characterized so that a high-fidelity numerical model could be assembled.
A multi-physics model featuring a simplified electromagnetic representation of the injector solenoid and a spring-mass-damper system for the pintle dynamics integrated with a 1-dimensional computational fluid dynamics description of the internal flow using two-way fluid-structure-interaction coupling was developed in the commercial software GT-Suite. The model is capable of accurately predicting the pintle position and average flow rates, at a variety of conditions, using working fluid pressure and injector current profile as the only inputs.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".