Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Measurement of Liquid Fuel Film Attached to the Wall in a Port Fueled SI Gasoline Engine

Detailed Information

Author(E)1) Tatsuya Kuboyama, 2) Tsukasa Yoshihashi, 3) Yasuo Moriyoshi, 4) Osamu Nakabeppu, 5) Satoshi Takayama
Affiliation(E)1) Chiba University, 2) Chiba University, 3) Chiba University, 4) Meiji University, 5) Suzuki Motor Corp
Abstract(E)Liquid fuel attached to the wall surface of the intake port, the piston and the combustion chamber is one of the main causes of the unburned hydrocarbon emissions from a port fueled SI engine, especially during transient operations. To investigate the liquid fuel film formation process and fuel film behavior during transient operation is essential to reduce exhaust emissions in real driving operations, including cold start operations. Optical techniques have been often applied to measure the fuel film in conventional reports, however, it is difficult to apply those previous techniques to actual engines during transient operations. In this study, using MEMS technique, a novel capacitance sensor has been developed to detect liquid fuel film formation and evaporation processes in actual engines. A resistance temperature detector (RTD) was also constructed on the MEMS sensor with the capacitance sensor to measure the sensor surface temperature. The response and the sensitivity of the developed sensor were examined at the atmospheric conditions at first. As a result, it was found that though the sensor shows less sensitivity to pure commercial gasoline, it has enough sensitivity to gasoline fuel containing 20% ethanol (E20 gasoline). After the sensitivity test, the sensor was installed into the intake pipe of the single cylinder engine and examined to detect the liquid fuel film on the wall of the intake pipe. The engine was operated at a constant speed of 2000 rpm with E20 gasoline fuel. The sensor performed well during the engine operation, and the liquid fuel impingement and evaporation process could be monitored.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".