Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Experimental Study on Diesel Spray Combustion and Wall Heat Transfer with Multiple Fuel Injection Strategies - Results of Rapid Compression and Expansion Machine Experiment

Detailed Information

Author(E)1) Herry Sufyan HADI, 2) Chengyuan FAN, 3) Atsushi Takayama, 4) Keiya Nishida, 5) Youichi Ogata, 6) Rizal Mahmud
Affiliation(E)1) Hiroshima University, 2) Haier Water Heater Co., Ltd, 3) Hiroshima University, 4) Univ of Hiroshima, 5) Hiroshima Univ, 6) Meiji University
Abstract(E)The rapid compression expansion machine (RCEM) was used to investigate the temporal variations of the spray flame and wall heat flux in the diesel engine combustion process by using 120 MPa and 180 MPa common rail pressure. A stepped cavity was applied to investigate spray and flame behavior under the pilot, pre and main multiple injection strategy. Wall heat flux sensors were installed in the piston cavity and the cylinder side. The injector has 3 holes with the neighboring angle in the left direction and another 3 holes in the right direction to simulate the spray interaction in the 10-hole injector combustion system in the actual diesel engine. The spray and flame behavior were taken by a high-speed video camera with direct photograph. A two-color analysis was applied to investigate gas temperature and KL factor distribution. The effect of locations and common rail pressure on heat transfer was investigated. The result shows that multiple injections improve better atomization and air fuel mixture formation which reduces combustion duration in the combustion chamber. Pilot injection and pre-injection have no significant effect on the wall heat flux due to the low in-cylinder pressure and ambient temperature before TDC. The wall heat flux in cylinder head is the highest of all locations due to the intense combustion flame occurs in this region. The increasing common rail pressure tends to increase the peak value of the wall heat flux and decrease the combustion duration. To investigate the heat transfer phenomena in more, the correlation between Nusselt and Reynold numbers is presented in this study. The direct flame image, heat flux waveforms, and quasi-steady state are applied to obtain the characteristic velocity. Two-color analysis is used to obtain the gas temperature. The result shows that the heat transfer phenomena can be expressed by the correlation between Nusselt and Reynold numbers.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".