Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Impact of Fog Particles on 1.55 μm Automotive LiDAR Sensor Performance: An Experimental Study in an Enclosed Chamber

Detailed Information

Author(E)1) Lu Zhan, 2) William F. Northrop
Affiliation(E)1) University of Minnesota-Twin Cities, 2) University of Minnesota-Twin Cities
Abstract(E)To achieve full automation in self-driving vehicles, environmental perception sensing accuracy is critically important. However, ambient particles in adverse weather like foggy, rainy, or snowy conditions can significantly scatter the incident laser beam, and therefore contaminate the intensity and accuracy of light detection and ranging (LiDAR) sensors. Especially compared to the rapidity of technology development in self-driving vehicles, there is a significant lack of documented research on LiDAR systems with wavelength longer than 1 μm for application in Advanced Driver-Assistance Systems. In this work, experimental studies were performed with a state-of-the-art 1.55 μm wavelength automotive-grade LiDAR system in a controlled laboratory fog chamber. The goal of the research is to correlate laser attenuation and the optical properties of fog particles. In this work, a thorough multistep procedure for LiDAR data analysis is presented including spatial averaging of the object measurement and characterizing the temperature effect on a LiDAR intensity parameter. Fog particle density is measured by a commercial visibility sensor instrument. Assuming a constant extinction coefficient and backscatter coefficient, a simple analytical model is derived that correlates LiDAR reflectance and extinction coefficient measured by visibility sensor. Results show that the correlation coefficient between LiDAR and visibility sensor data is 0.98 and the R-squared value of linear fitting is 0.96. By comparing the LiDAR original signal and the model, the Root-Mean-Squared Deviation is 0.007, meaning the model performs very well for predicting LiDAR reflectance in the controlled environment. Furthermore, although the returned signal strength is attenuated, the LiDAR can measure the target with a visibility range lower than six meters.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".