Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Accurate Pressure Control Based on Driver Braking Intention Identification for a Novel Integrated Braking System

Detailed Information

Author(E)1) Bing Zhu, 2) Yihan Zhang, 3) Jian Zhao, 4) Zhicheng Chen, 5) Wanli Jin
Affiliation(E)1) Jilin University, 2) Jilin University, 3) Jilin University, 4) Jilin University, 5) Jilin University
Abstract(E)With the development of intelligent and electric vehicles, higher requirements are put forward for the active braking and regenerative braking ability of the braking system. The traditional braking system equipped with vacuum booster has difficulty meeting the demand, therefore it has gradually been replaced by the integrated braking system. In this paper, a novel Integrated Braking System (IBS) is presented, which mainly contains a pedal feel simulator, a permanent magnet synchronous motor (PMSM), a series of transmission mechanisms, and the hydraulic control unit. As an integrative system of mechanics-electronics-hydraulics, the IBS has complex nonlinear characteristics, which challenge the accurate pressure control. Furthermore, it is a completely decoupled braking system, the pedal force doesn’t participate in pressure-building, so it is necessary to precisely identify driver’s braking intention. To improve the control accuracy of the system, this paper proposed a novel pressure control strategy based on driver braking intention identification. Firstly, the structure and working principle of the novel integrated braking system was introduced. Secondly, the driver's braking intention identification strategy was designed. Thirdly, Considering the nonlinear and dynamic characteristics of the system, a cascade closed-loop control strategy including a pressure loop by the feedforward-feedback method, a position loop by the sliding-mode control method, and current loop with friction compensation was proposed. Finally, based on dSPACE products, a hardware-in-the-loop (HiL) experimental bench was built for algorithm verification. The HiL experiment results show that the pressure control strategy has the advantages of accurate response, the braking system pressure follows the driver's expected pressure well.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".