Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Suspension Optimization Based on Evolutionary Algorithms for Four-Wheel Drive and Four-Wheel Steered Vehicles

Detailed Information

Author(E)1) Manuel Schwartz, 2) Lukas Luithle, 3) Sören Hohmann
Affiliation(E)1) Karlsruhe Institute of Technology, 2) Karlsruhe Institute of Technology, 3) Karlsruhe Institute of Technology
Abstract(E)A gray-box optimization procedure based on evolutionary algorithms for the initial design of a suspension concept for four wheel independently driven and steered vehicles is developed. With the presented optimization method, the energy consumption together with state of the art knowledge about the parametrization and design of vehicle suspension systems leads to an optimization setup closely to real world requirements while the vehicle’s topology is exploited. To this, the modelling presented in is considered as a geometric suspension model. Furthermore, to take advantage of the potential of such vehicles, an autonomous closed-loop setup with integrated motion control is utilized. During the optimization, the chassis parameters with the most impact on energy consumption and driving dynamics, namely camber, caster, scrub radius and the steering axis inclination (SAI) depending on a varying caster angle and SAI in relation to the steering angle, will be focused. Therefore, the geometric arrangement of linkages, further considered as optimization parameters, substitutes certain modelling assumptions, leading to a realistic parametrization regarding mechanical design. The proposed chassis design procedure is divided into a five-stage sequence. After the model and controller initialization, roll and pitch centers are determined optimally in step two. In the following step, initial parameters of the suspension are determined in the design attitude with particle swarm optimization (PSO) and static maneuvers. Subsequently, the suspension characteristics, depending on the steering angles as well as the vehicle’s vertical dynamics, during the dynamic ISO double lane change is determined indirectly with genetic algorithms (GA) and the geometric parameters used as optimization variables. Finally, to verify the suspension also for future requirements, the resulting sets of parameters are checked with some unconventional driving maneuvers, which in particular make use of the larger steering angles.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".