Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Experimental and Numerical Investigations on Time-Resolved Flow Field Data of a Full-Scale Open-Jet Automotive Wind Tunnel

Detailed Information

Author(E)1) Jonas Sebald, 2) Jan Reiss, 3) Marco Kiewat, 4) Thomas Indinger
Affiliation(E)1) Technical University of Munich, 2) Technical University of Munich, 3) AUDI AG, 4) Technical University of Munich
Abstract(E)One main goal of the automotive industry is to reduce the aerodynamic drag of passenger vehicles. Therefore, a deeper understanding of the flow field is necessary. Time-resolved data of the flow field is required to get an insight into the complex unsteady flow phenomena around passenger vehicles. This data helps to understand the temporal development of wake structures and enables the analysis of the formation of vortical structures. Numerical simulations are an efficient method to analyze the time-resolved data of the unsteady flow field. The analysis of the steady and unsteady numerical data is only relevant for aerodynamic developments in the wind tunnel, if the predicted temporal evolving structures of a passenger vehicle’s simulated flow field correspond to the structures of the flow field in the wind tunnel. In this study, time-resolved measurements of the empty wind tunnel and a notchback passenger vehicle in the wind tunnel are conducted. The temporal structures of the vehicle’s wake are investigated with a hot-wire anemometer. These measurements help to understand the occurring unsteady flow phenomena at the vehicle in the wind tunnel. Furthermore, the measured data is used as a reference for the comparison of the time-resolved numerical data with the experimental data. For the numerical data, an unsteady Spalart-Allmaras Delayed Detached Eddy Simulation in OpenFOAM® is used and compared to measurements in an automotive wind tunnel. This comparison shows differences in the unsteady datasets. Therefore, a novel approach for the numerical simulation of wind tunnel tests is presented here. A temporal evolving boundary condition ensures an improved correlation between the numerical data and the experimental wind tunnel data. With this optimized numerical setup, fundamental improvements are achieved. Additionally, the findings of numerical time-resolved analysis methods are gaining in relevance for the aerodynamic development.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".