Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

New Results from the Evaluation of Drag Reduction Technologies for Light-Duty Vehicles

Detailed Information

Author(E)1) Fenella de Souza, 2) Arash Raeesi, 3) Marc Belzile, 4) Cheryl Caffrey, 5) Andreas Schmitt
Affiliation(E)1) National Research Council Canada, 2) National Research Council Canada, 3) Transport Canada, 4) US EPA, 5) Röchling Automotive
Abstract(E)Aerodynamic technologies for light-duty vehicles were evaluated through full-scale testing in a large low-blockage closed-circuit wind tunnel equipped with a rolling road, wheel rollers, boundary-layer suction and a system to generate road-representative turbulent flow. This work was part of a multi-year, multi-vehicle study commissioned by Transport Canada and Environment and Climate Change Canada, and carried out in cooperation with the US EPA, to support the evaluation of light-duty-vehicle greenhouse-gas-emission regulations. A 2016 paper reported drag-reduction measurements for technologies such as active grille shutters, production and custom underbody treatments, air dams, ride height control and combinations of these. This paper describes an extension to that work and addresses vehicle aerodynamics in three ways. First, whole vehicle body-shaping changes were evaluated by adding older or newer generation models, representing distinct body style redesigns, of select vehicles of different classes from the 2016 study. Second, newer vehicles were added to represent the market application of advanced aerodynamics in terms of body shaping and drag-reduction technologies. Third, drag reduction over a range of yaw angles is reported for new technologies such as side-mirror removal (for replacement with camera systems) and air curtains. This paper focuses specifically on drag measurements, complementing a 2019 paper which focused on relating mean surface, wake and underbody pressure measurements to aerodynamic drag for a selection of the test vehicles.
The most effective redesign of a vehicle was found to reduce the wind-averaged drag area by 9% compared to the previous model. The best commercial or idealized applications of the top performing technologies, namely ride height control, underbody panels and active grille shutters, provided wind-averaged drag area reductions in the 6% to 8% range. Idealized technologies performed better than their commercial counterparts. The best applications of other technologies like side mirror removal and OEM air dams were in the range of 3% to 5% reduction in wind-averaged drag area. All OEM air curtains performed better when combined with ride height reduction but still only reduced wind-averaged drag area by around 1% in the best case. The complete range of results, yaw effects and comparison with previously published results are presented and discussed in this paper.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".