Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Near-to-Far Wake Characteristics of Road Vehicles Part 2: Influence of Cross Winds and Free-Stream Turbulence

Detailed Information

Author(E)1) Brian McAuliffe, 2) Bhargav Sowmianarayanan, 3) Hali Barber
Affiliation(E)1) National Research Council Canada, 2) Dassault Systemes, 3) National Research Council Canada
Abstract(E)Conventional assessments of the aerodynamic performance of ground vehicles have, to date, been considered in the context of a vehicle that encounters a uniform wind field in the absence of surrounding traffic. Recent vehicle-platooning studies have revealed measurable fuel savings when following other vehicles at inter-vehicle distances experienced in every-day traffic. These energy savings have been attributed in large part to the air-wakes of the leading vehicles. This set of three papers documents a study to examine the near-to-far regions of ground-vehicle wakes (one to ten vehicle lengths), in the context of their potential influence on other vehicles.
Part two of this three-part paper documents the influence of the ambient winds on the development of the wake behind a vehicle. A series of scaled-model wind-tunnel measurements, supplemented by some high-fidelity numerical simulations, based on a Lattice-Boltzmann approach, are presented to examine the effects cross-wind magnitude, by means of changes in yaw angle, on the wakes behind four vehicle shapes: a sedan, an SUV, a pickup truck, a medium-duty vehicle and a heavy-duty vehicle. The influence of road-representative freestream turbulence is also examined.
The results of these investigations show that, under yaw conditions, the distinct differences between the wake structures of slant/step-back and square-back shapes, documented in Part 1, are eliminated. At yaw, the moderate-to-far wake region is dominated by a large vortex structure of similar size to the vehicle itself that generates significant sidewash, analogous to the downwash in the wake of a wing in pitch. All vehicle shapes studied demonstrate this vortex structure which increases in strength with yaw angle. For vehicles following in the wake, not only do they experience a wind-speed deficit associated with the wake, but they experience a twisted wind profile with reduced yaw angles near the ground. The introduction of freestream turbulence is shown to generate a large wake with reduced shear, but without changing the dominant flow characteristics.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".