Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Fail-Safe Study on Brake Blending Control

Detailed Information

Author(E)1) Christoph Lehne, 2) Klaus Augsburg, 3) Valentin Ivanov, 4) Vincenzo Ricciardi, 5) Florian Büchner, 6) Viktor Schreiber
Affiliation(E)1) Technische Universitat Ilmenau, 2) Technische Universitat Ilmenau, 3) Technische Universitat Ilmenau, 4) Technische Universitat Ilmenau, 5) Technische Universitat Ilmenau, 6) Technische Universitat Ilmenau
Abstract(E)Battery electric vehicles (BEV) share the ability of regenerative braking since they are equipped with two independent types of deceleration devices, namely the electric motor working as a generator and the friction brakes. Correct interaction of these systems in terms of driving safety and energy efficiency is a function of the Brake Blending Control. Individual electric motors for each wheel and a decoupled brake system provides the Brake Blending with a high design flexibility that allows significant advantages regarding energy consumption, brake performance, and driving comfort. This paper is focusing on the fail behaviour and analyses the robustness and redundancy abilities of such systems against various error scenarios. For this purposes, a distributed x-in-the-loop environment, consisting of dedicated simulation and hardware testing components, is introduced. The investigation is carried out based on a high-fidelity real-time simulation model of an electric sport utility vehicle with four in-wheel motors (IWM) and decoupled electro-hydraulic brake system. This model can be used for a detailed analysis of vehicle dynamics in case of brake system fails. The electro-hydraulic decoupled brake system is implemented through a Hardware-in-the-loop test rig, which allows a realistic fault injection. The vehicle stability and controllability is investigated under the circumstances of various brake system failures in the regenerative and friction brake system, respectively. These studies are presented according to standardized test scenarios like Straight line braking (DIN 70028) and Brake-in-turn (ISO 7975). With obtained x-in-the-loop simulation results, the impact of a failure on vehicle dynamics is discussed in the final part of the paper.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".