Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Simulation Driven Design of HVAC Systems under Competing HVAC Noise and Defrost Performance Requirements

Detailed Information

Author(E)1) Vijaisri Nagarajan, 2) Jan Biermann, 3) Jens Goldberg, 4) Hamza Motiwala, 5) Diogo Martins, 6) Charles Luzzato, 7) Devadatta Mukutmoni
Affiliation(E)1) Dassault Systemes, 2) BMW AG, 3) Dassault Systemes, 4) Dassault Systemes, 5) Dassault Systemes, 6) Dassault Systemes, 7) Dassault Systemes
Abstract(E)It is particularly easy to get tunnel vision as a domain expert, and focus only on the improvements one could provide in their area of expertise. To make matters worse, many Original Equipment Manufacturers (OEMs) are silo-ed by domain of expertise, unconsciously promoting this single mindedness in design. Unfortunately, the successful and profitable development of a vehicle is dependent on the delicate balance of performance across many domains, involving multiple physics and departments.
Taking for instance the design of a Heating, Ventilation & Air Conditioning (HVAC) system, the device’s primary function is to control the climate system in vehicle cabins, and more importantly to make sure that critical areas on the windshield can be defrosted in cold weather conditions within regulation time. With the advent of electric and autonomous vehicles, further importance is now also placed on the energy efficiency of the HVAC, and its noise.
During the development of the defrost mode of an HVAC, the first priority is to satisfy the certification tests for defrost performance, verifying the vehicle’s safety. Since no realistic prototype of the vehicle interior can be built in early stages, this can lead to an increased mass flow rate through the HVAC defrost registers, and consequently increased noise levels from the HVAC. Furthermore, the complexity of the windshield and defroster topography is not considered in detail at the early design stage, resulting in dead zones and hindering visibility. Limited testing focusing mainly on passing defrost regulations leads to more defrost noise, and complaints from consumers.
In this paper, we will present a novel Computational Fluid Dynamics (CFD) method to digitally design quiet HVAC systems through virtual defrost performance certification with reduced development time. Using this method, we will show that simulation can be used to drive early stage optimization of both defrost performance and noise in a CAD based parametric optimization.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".