Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Optimization of Exhaust Muffler Design Variables for Transmission Loss Using Coupling of modeFRONTIER and GT-POWER

Detailed Information

Author(E)1) Diwakar Hiwale, 2) Vilas Bijwe, 3) Rohit Vaidya, 4) Yuvraj Chavan
Affiliation(E)1) Tata Motors, Ltd., 2) Tata Motors, Ltd., 3) Tata Motors, Ltd., 4) Tata Motors, Ltd.
Abstract(E)Exhaust Noise attenuation is one of the important functions of exhaust muffler. Transmission Loss (TL) is a measure of noise attenuation used in designing exhaust mufflers for NVH. TL is a logarithmic difference between inlet and outlet pressures for unit velocity input at inlet of the muffler and anechoic termination at outlet of the muffler as boundary conditions. TL amplitude and its frequency tuning depends on a combination of various muffler design parameters like volume, length, muffler cross section, pipe cross sections, pipe perforations, number of chambers, baffle perforations, etc. Achieving the desired TL performance with no valleys over a wide frequency range is very challenging. Manual design iterations with large numbers of permutations and combinations of design variables are difficult and time-consuming. It also needs a highly experienced professional to balance TL performance, design variables and design constraints. The current paper discusses an exhaust muffler TL optimization simulation process that couples modeFRONTIER for DOEs, & GT-POWER, for acoustic simulation. All identified design variables are iterated in batch mode within specified design limits. DOEs are set up using Non-dominated Sorting Genetic Algorithm (NSGA) or Multi Objective Genetic Algorithm (MOGA) in modeFRONTIER. Based upon pre-defined iterative simulation cycles, muffler design is optimized to meet design constraints and TL performance. This optimization helps to reduce manual efforts in building simulation models, to carry out more iterations, to reduce solver time, to reduce manual intervention for post processing, and to give optimized TL performance.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".