Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Development of a Fully Physical Vehicle Model for Off-Line Powertrain Optimization: A Virtual Approach to Engine Calibration

Detailed Information

Author(E)1) Federico Millo, 2) Andrea Piano, 3) Alessandro Zanelli, 4) Giulio Boccardo, 5) Marcello Rimondi, 6) Rocco Fuso
Affiliation(E)1) Politecnico di Torino, 2) Politecnico di Torino, 3) POWERTECH Engineering S.r.l., 4) POWERTECH Engineering S.r.l., 5) Punch Torino SpA (former GM), 6) Punch Torino SpA (former GM)
Abstract(E)Nowadays control system development in the automotive industry is evolving rapidly due to several factors. On the one hand legislation tightening is asking for simultaneous emission reduction and efficiency increase, on the other hand the complexity of the powertrain is increasing due to the spreading of electrification. Those factors are pushing for strong design parallelization and frontloading, thus requiring engine calibration to be moved much earlier in the V-Cycle. In this context, this paper shows how, coupling well known physical 1D engine models featuring predictive combustion and emission models with a fully physical aftertreatment system model and longitudinal vehicle model, a powerful virtual test rig can be built. This virtual test rig can be used for powertrain virtual calibration activities with reduced requirement in terms of experimental data.
This work moved from an already developed and validated powertrain and vehicle model featuring a 1.6-liter diesel engine Fast Running Model (FRM) with DIPulse predictive combustion and emissions model. On one hand, the engine model was calibrated on 29 steady state operating points and validated on a full engine map, showing a maximum error below 5% on Brake Specific Fuel Consumption (BSFC) and an average error around 20% for NOx emissions. On the other hand, the vehicle and aftertreatment model, composed by Diesel Oxidation Catalyst (DOC) and Selective Catalyst Reduction on Filter (SCRoF), was validated on the Worldwide Harmonized Light Duty Vehicles Test Cycle (WLTC) in terms of fuel consumption, engine-out and tailpipe NOx emissions.
This virtual test rig was then used to optimize the engine calibration in a fully automated way, exploiting NSGA-III (Non dominated Sorting Genetic Algorithm) and strong parallelization capabilities. The optimization considered different design constraints, including also the combustion noise and was performed over a set of Key Points (KPs) representative of the engine operating conditions along WLTC, RTS95, US06 and FTP75. 10 independent variables were considered including both fuel injection and air management control variables. Output of the optimization was the Pareto front BSFC-Noise-NOx per each operating point. This intermediate result could directly be used by calibration engineers to select the most appropriate calibration set. Moreover, the Pareto fronts were used in an additional optimization loop to develop various calibration sets, each of which with a different weight for NOx emissions and engine fuel consumption.
Finally, the optimized engine calibrations were assessed over the WLTC. The fully virtual approach was so demonstrated to be capable to achieve comparable results with respect to traditional experimental engine calibration methods at a fraction of time and cost and before any vehicle experimental activity.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".