Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Combined CFD - Experimental Analysis of the In-Cylinder Combustion Phenomena in a Dual Fuel Optical Compression Ignition Engine

Detailed Information

Author(E)1) Roberta De Robbio, 2) Maria Cristina Cameretti, 3) Ezio Mancaruso, 4) Raffaele Tuccillo, 5) Bianca Maria Vaglieco
Affiliation(E)1) STEMS-CNR, 2) University of Napoli Federico II, 3) STEMS-CNR, 4) University of Napoli Federico II, 5) STEMS-CNR
Abstract(E)Methane supply in diesel engines operating in dual fuel mode has demonstrated to be effective for the reduction of particulate matter and nitric oxides emissions from this type of engine. In particular, methane is injected into the intake manifold to form a premixed charge with air, while a reduced amount of diesel oil is still directly injected to ignite the mixture inside the cylinder. As a matter of fact, the liquid fuel burns following the usual diffusive combustion, so activating the gaseous fuel oxidation in a premixed flame. Clearly, the whole combustion process appears to be more complex to be described in a CFD simulation, mainly because it is not always possible to select in the 3-dimensional codes a different combustion model for each fuel and, also, because other issues arise from the interaction of the two fuels. In this work, the Autoignition-Induced Flame Propagation model, which is included in the ANSYS Forte® tool, is applied since it represents the most appropriate model to describe the dual fuel combustion. Indeed, this model uses the G-equation to track the position and the propagation of the premixed turbulent flame, but the flame activation source is represented by the autoignition kinetics reaction scheme for the n-dodecane. The results discussed in this paper refer to experimental tests carried out on an optically accessible research engine whose real geometry and mesh were reproduced with the K3PREPW tool. Through the use of a system of sensors and optical diagnostic, the combined numerical - experimental study allows a deeper investigation of phenomena that take place in real dual fuel operations characterized by different engine speeds, 1500 and 2000 rpm, load levels, 2 and 5 bar of BMEP, injection timing and a premixed ratio between 86 and 89%.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".