Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Development of a Fast-Running Injector Model with Artificial Neural Network (ANN) for the Prediction of Injection Rate with Multiple Injections

Detailed Information

Author(E)1) Dominik Golc, 2) Stefania Esposito, 3) Heinz Pitsch, 4) Joachim Beeckmann
Affiliation(E)1) RWTH Aachen University, 2) RWTH Aachen University, 3) RWTH Aachen University, 4) RWTH Aachen University
Abstract(E)The most challenging part of the engine combustion development is the reduction of pollutants (e.g. CO, THC, NOx, soot, etc.) and CO2 emissions. In order to achieve this goal, new combustion techniques are required, which enable a clean and efficient combustion. For compression ignition engines, combustion rate shaping, which manipulates the injected fuel mass to control the in-cylinder pressure trace and the combustion rate itself, turned out to be a promising opportunity. One possibility to enable this technology is the usage of specially developed rate shaping injectors, which can control the injection rate continuously. A feasible solution with series injectors is the usage of multiple injections to control the injection rate and, therefore, the combustion rate. For the control of the combustion profile, a detailed injector model is required for predicting the amount of injected fuel. Simplified 0D models can easily predict single injection rates with low deviation. However, the prediction of injection rates with multiple injections is more challenging, because of the impact of past injections on future ones. In this work, an advanced 0D injector model is presented, which takes into account the effect of injection history. In order to develop and calibrate the model, an injection rate testbench has been used to generate an extensive and suitable database. This database is used to train an artificial neural network (ANN), which is integrated in the model. The developed multi-injection model predicts with high accuracy (R2>0.85) the experimental injection rate up to four injections. Additionally, the model is real-time capable and therefore usable for controller application.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".