Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

What Are the Barriers Against Brake Thermal Efficiency beyond 55% for HD Diesel Engines?

Detailed Information

Author(E)1) Kazumasa Watanabe, 2) Noboru Uchida, 3) Kazuhiro Yokogawa, 4) Fumihiro Kawaharazuka
Affiliation(E)1) New Ace Inst. Co., Ltd., 2) New Ace Inst Co Ltd, 3) New Ace Inst Co Ltd, 4) New Ace Inst Co Ltd
Abstract(E)This study focused on the technology integration to aim beyond 60% indicated thermal efficiency (ITE) with a single-cylinder heavy-duty diesel engine as an alternative to achieve 55% brake thermal efficiency (BTE) with multiple-cylinder engines. Technology assessment was initially carried out by means of a simple chart of showing ITE and exhaust heat loss as functions of cooling loss and heat conversion efficiency into indicated work. The proposed compression ratio (28:1), excess air ratio and new ideal thermodynamic cycle were then determined by a simple cycle calculation. Except for peak cylinder pressure constraint for each engine, the technical barriers for further ITE improvement are mainly laid in cooling loss reduction, fuel-air mixture formation improvement, and heat release rate optimization under very high temperature and density conditions with very high compression ratio (smaller cavity volume). For the significant cooling loss reduction, a new concept of in-cylinder wall surface coating combined with intake chilling was experimentally investigated based on the hypothesis of the cooling loss mechanism which relates the heat transfer phenomena on the surface not only during combustion period but also during exhaust and intake strokes. For the mixture formation improvement, several numerical or experimental case studies were carried out to find the guideline for the chamber shape and fuel injection equipment design. For the heat release rate optimization, a new thermodynamic cycle was proposed. Although the engine has not been fully optimized yet, 59.5% ITE was experimentally achieved with the single cylinder engine by utilizing these technologies without any significant drawbacks.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".