Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Experimental and Numerical Investigation on Hydrogen Internal Combustion Engine

Detailed Information

Author(E)1) Loic Rouleau, 2) Florence Duffour, 3) Bruno Walter, 4) Rajesh Kumar, 5) Ludovic Nowak
Affiliation(E)1) IFP Energies Nouvelles, 2) IFP Energies Nouvelles, 3) IFP Energies nouvelles, 4) IFP Energies Nouvelles, 5) IFP Energies nouvelles
Abstract(E)Hydrogen may be used to feed a fuel cell or directly an internal combustion engine as an alternative to current fossil fuels. The latter option offers the advantages of already existing hydrocarbon fuel engines - autonomy, pre-existing and proven technology, lifetime, controlled cost, existing industrial tools and short time to market - with a very low carbon footprint and high tolerance to low purity hydrogen. Hydrogen is expected to be relevant for light and heavy duty applications as well as for off road applications, but currently most of research focus on small engine and especially spark ignition engine which is easily adaptable. This guided us to select modern high-efficient gasoline-based engines to start the investigation of hydrogen internal combustion engine development.
This study aims to access the properties and limitations of hydrogen combustion on a high-efficiency spark ignited single cylinder engine with the support of the 3D-CFD computation.
A high efficiency gasoline single cylinder engine was adapted for hydrogen combustion system with a direct injection and a platinum-free cold spark plug. The injection and camshaft phasing ranges were defined to limit the passage of hydrogen in the intake and exhaust manifolds. The experiments were focused on two operating points (2000rpm and 3000rpm at IMEP=10 bar) at various fuel-air equivalent ratios, fuel injection and air intake camshaft timings and in-cylinder charge motion, at high compression ratio (CR=14). 3D-CFD computation was carried out on CONVERGETM to visualize and understand the local mixing in the combustion chamber.
The study revealed that the highest indicated efficiency (close to 47%) coupled with low NOX and acceptable unburnt H2 emissions (respectively below 0.5g/kWh and 1% input energy) was obtained at lean mixture, early hydrogen injection and high tumble level. The pre-ignition known as one of the highest challenges in hydrogen combustion is successfully limited by adjusting the injection timing and camshaft phasing. 3D-CFD simulations showed that optimum fuel injection and intake camshaft timings should favor the homogenization of the mixture and avoid the presence of rich zones near hot spots to avoid pre-ignition.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".