Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

A Random Forest Algorithmic Approach to Predicting Particulate Emissions from a Highly Boosted GDI Engine

Detailed Information

Author(E)1) Nick Papaioannou, 2) Xiaohang Fang, 3) Felix Leach, 4) Andrew Lewis, 5) Sam Akehurst, 6) James Turner
Affiliation(E)1) University of Oxford, 2) University of Oxford, 3) University of Oxford, 4) University of Bath, 5) University of Bath, 6) KAUST
Abstract(E)Particulate emissions from gasoline direct injection (GDI) engines continue to be a topic of substantial research interest. Forthcoming regulation both in the USA and the EU will further reduce their emission and drive innovation. Substantial research effort is spent undertaking experiments to understand, characterize, and research particle number (PN) emissions from engines and vehicles. Recent advances in computing power, data storage, and understanding of artificial intelligence algorithms now mean that these are becoming an important tool in engine research. In this work a random forest (RF) algorithm is used for the prediction of PN emissions from a highly boosted (up to 32 bar BMEP) GDI engine. Particle size, concentration, and the accumulation mode geometric standard deviation (GSD) are all predicted by the model. The results are analysed and an in depth study on parameter importance is carried out. The Random Forest algorithm is used as an estimator and the various engine parameters are ranked with a permutation feature importance technique using mean squared error as a performance metric. The results showed that from 82 model parameters only 17 are important for predicting the above PN emission parameters. Moreover, the permutation importance algorithm showed that when the parameters are reduced to 9 the model accuracy is improved due to a reduction in model variance. Overall, the model shows excellent predictive performance for all three parameters even when an independent dataset is used.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".