Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Estimation of Speciation Data for Hydrocarbons using Data Science

Detailed Information

Author(E)1) Kiran Yalamanchi, 2) Bingjie chen, 3) Rooppesh Sarankapani, 4) Mani Sarathy
Affiliation(E)1) Kaust, 2) 0, 3) 0, 4) KING ABUDLLAH UNIVERSITY OF SCIENCE & TE
Abstract(E)Strict regulations on air pollution motivates clean combustion research for fossil fuels. To numerically mimic real gasoline fuel reactivity, surrogates are proposed to facilitate advanced engine design and predict emissions by chemical kinetic modelling. However, chemical kinetic models could not accurately predict non-regular emissions, e.g. aldehydes, ketones and unsaturated hydrocarbons, which are important air pollutants. In this work, we propose to use machine-learning algorithms to achieve better predictions. Combustion chemistry of fuels constituting of 10 neat fuels, 6 primary reference fuels (PRF) and 6 FGX surrogates were tested in a jet stirred reactor. Experimental data were collected in the same setup to maintain data uniformity and consistency under following conditions: residence time at 1.0 second, fuel concentration at 0.25%, equivalence ratio at 1.0, and temperature range from 750 to 1100K. Measured species profiles of methane, ethylene, propylene, hydrogen, carbon monoxide and carbon dioxide are used for machine-learning model development. The model considers both chemical effects and physical conditions. Chemical effects are described as different functional groups, viz. primary, secondary, tertiary, and quaternary carbons in molecular structures, and physical conditions as temperature. Both the Machine-learning models used in this study showed a good prediction accuracy with a test set regression score of 97.75 for support vector regression and 91.07 for random forest regression. This finding shows the great potential of machine learning application on combustion chemistry. By expanding the experimental database, machine-learning models can be further applied to many other hydrocarbons in future work.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".