Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Numerical Assessment of an After-Treatment System Equipped with a Burner to Speed-Up the Light-Off during Engine Cold Start

Detailed Information

Author(E)1) Augusto Della Torre, 2) Loris Barillari, 3) Gianluca Montenegro, 4) Angelo Onorati, 5) Federico Rulli, 6) Stefano Paltrinieri, 7) Vincenzo Rossi, 8) Francesco Pulvirenti
Affiliation(E)1) Politecnico di Milano, 2) Politecnico di Milano, 3) Politecnico di Milano, 4) Politecnico di Milano, 5) Ferrari S.p.A., 6) Ferrari S.p.A., 7) Ferrari S.p.A., 8) Ferrari S.p.A.
Abstract(E)In the next years, the upcoming emission legislations are expected to introduce further restrictions on the admittable level of pollutants from vehicles measured on homologation cycles and real drive tests. In this context, the strict control of pollutant emissions at the cold start will become a crucial point to comply with the new regulation standards. This will necessarily require the implementation of novel strategies to speed-up the light-off of the reactions occurring in the after-treatment system, since the cold start conditions are the most critical one for cumulative emissions. Among the different possible technological solutions, this paper focuses on the evaluation of the potential of a burner system, which is activated before the engine start. The hypothetical burner exploits the lean combustion of an air-gasoline mixture to generate a high temperature gas stream which is directed to the catalyst section promoting a fast heating of the substrate. In this work, an experimental test bench has been adopted to characterize the thermal transient of the after-treatment system when the burner-like system is activated, monitoring the temperature of the gas flow and the temperature of the metallic walls at different locations. Moreover, a CFD model has been developed to investigate the light-off of the reactions during the initial operation of the burner and the subsequent start of the engine. The model, developed on the basis of the OpenFOAM code, resorts to a multi-region approach, where different meshes are employed to describe the fluid domain and the solid regions, namely the catalytic porous substrates and the metallic walls constituting pipes and canning. Specific submodels are implemented to consider flow resistance, heat transfer, mass transfer and catalytic reactions occurring in the catalyst region. The CFD framework has been initially validated on the experimental data acquired on the test bench. The methodology has been then applied to the preliminary analysis of the catalyst light-off at engine cold start, considering a full exhaust line equipped with burner-like system.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".