Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Optimal Energy Management Strategy for Energy Efficiency Improvement and Pollutant Emissions Mitigation in a Range-Extender Electric Vehicle

Detailed Information

Author(E)1) Manfredi Villani, 2) Ankur Shiledar, 3) Tong Zhao, 4) Carlos Lana, 5) Dat Le, 6) Qadeer Ahmed, 7) Giorgio Rizzoni
Affiliation(E)1) Ohio State University, 2) Ohio State University, 3) Ohio State University, 4) Cummins Inc, 5) Cummins Inc, 6) Ohio State University, 7) Ohio State University
Abstract(E)The definition of the energy management strategy for a hybrid electric vehicle is a key element to ensure maximum energy efficiency. The ability to optimally manage the on-board energy sources, i.e., fuel and electricity, greatly affects the final energy consumption of hybrid powertrains. In the case of plug-in series-hybrid architectures, such as Range-Extender Electric Vehicles (REEVs), fuel efficiency optimization alone can result in a stressful operation of the range-extender engine with an excessively high number of start/stops. Nonetheless, reducing the number of start/stops can lead to long periods in which the engine is off, resulting in the after-treatment system temperature to drop and higher emissions to be produced at the next engine start. In this work, Dynamic Programming is used to define the optimal energy management strategy for the REEV with a multi-objective cost function that takes into account not only fuel consumption, but also engine start/stops and pollutant emissions. To this aim, experimental data has been used to estimate emissions and develop a thermal model for the after-treatment system. Specifically, a Class 6 pick-up and delivery truck with a plug-in series-hybrid architecture has been modeled in a backward simulator using experimental performance maps. The results show that the optimal energy management strategy with respect to fuel consumption alone is a “blended” strategy. Conversely, the optimal strategy for minimum emissions and reduced start/stops is found to be a charge-depleting (pure electric) strategy with a one-time recharge. When the conflicting objectives of minimum fuel consumption, low number of engine start/stops, and reduced emissions are included in a single cost function for multi-objective optimization, the results show that a trade-off solution can be selected, for which the fuel consumption is near-optimal (less than 5% increase), the engine start/stops are low, and the pollutant emissions are reduced (by more than 50%).

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".