Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Characterization and Comparison of Steady-Flow Techniques Used for Engine Airflow Development

Detailed Information

Author(E)1) Alex R. Voris, 2) Paulius Puzinauskas
Affiliation(E)1) Univ of Alabama, 2) Univ of Alabama
Abstract(E)This paper compares bulk impulse-torque and 2D planar PIV steady flow-field measurements created by an engine cylinder head and intake system model using a steady-flow bench and evaluates operational aspects of the steady-flow test system. The model included a full-sized intake manifold and cylinder head section from a Chrysler 2.4L PFI four-valve per cylinder engine mounted to an optical cylinder. Two test system operational aspects were evaluated: (1) upstream versus downstream engine location relative to the flowbench (operational modes corresponding to flow bench pulling or pushing through the system), (2) PIV seeding particulate choice. Several dry and oil fog particulates were assessed however, of the options tested, only laboratory grade glass and consumer grade talc allowed long enough operation for practical data acquisition. Tests were performed over lift-over-diameter (L/D) ratios spanning from 0.1 to 0.3. The results indicate that for the setup evaluated, the flowbench operational mode effects are not larger than the standard repeatability of each test point. This result is significant because pushing the air through the test components allows the seeding to be introduced downstream of the flow bench which avoids damaging and potentially dangerous accumulation of particulate within it. Commercial grade talc seeded PIV provides comparable trend-wise results to the glass particulate at the low and high L/D ratios but indicated a transition to high lift structures at a later L/D than the glass particulate. Angular momentum calculated by integrating the PIV flow fields predicted the measurements made using the impulse torque meter through the flow transition better when using the glass particles, deviating a maximum of 13% with glass but as much as 60% using the talc. This is primarily attributable to the vastly different characteristics of the flow after the transition and the very narrow range of L/D where it occurs.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".