Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Spark Ignition Discharge Characteristics under Quiescent Conditions and with Convective Flows

Detailed Information

Author(E)1) Corey Tambasco, 2) Delong Li, 3) Matthew Hall, 4) Ronald Matthews
Affiliation(E)1) Univ of Texas-Austin, 2) Univ. of Texas at Ausitn, 3) Univ. of Texas-Austin, 4) Univ of Texas-Austin
Abstract(E)The arc characteristics and discharge behavior of a representative inductive spark ignition system were characterized with a spark plug calorimeter and a constant volume vessel used to create high-pressure crossflow velocities through the gap of the spark plug. A 14 mm diameter natural gas engine spark plug was used for the measurements. The discharges were into a non-combusting gas, primarily nitrogen.
The spark plug calorimeter was used to determine the electrical-to-thermal energy conversion in the spark gap under quiescent conditions, while the constant volume vessel was used to study ignition arc structure in convective crossflows and imaged with a high-speed camera. Topics included the effect of crossflow velocity, pressure (up to 20 bar at 300 K), and gap distance on breakdown voltage, arc duration and delivered electrical energy. Also of interest was the amount of remaining electrical energy on the coil versus spark duration in a cross flow. Resistance of the arc plasma during the discharge was correlated with arc length and the delivered electrical energy was compared with that dissipated in the internal resistance of the spark plug. The relationship between arc stretch and arc width was studied, as well. The post-breakdown arc voltage and current were correlated with images of the convected plasma arc to elucidate features associated with short-circuiting and restrikes. The relationships among spark duration, arc length and gap flow velocity were also considered. An interesting finding was that the shortened spark duration under high crossflow velocity was due to the more rapid depletion of the electrical energy stored in the secondary side of the inductive ignition circuit rather than to arc instabilities associated with the disturbance of the arc by the flow.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".