Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Effects of Partial Oxidation in an Unburned Mixture on a Flame Stretch under EGR Conditions

Detailed Information

Author(E)1) Kei Yoshimura, 2) Kohei Ozawa, 3) Kyohei Yamaguchi, 4) Ratnak Sok, 5) Jin Kusaka, 6) Masaaki Togawa, 7) Satoshi Tokuhara
Affiliation(E)1) Waseda University, 2) Waseda University, 3) Waseda University, 4) Waseda University, 5) Waseda University, 6) SUZUKI MOTOR CORPORATION, 7) SUZUKI MOTOR CORPORATION
Abstract(E)The purpose of the present study is to find a way to extend a combustion stability limit for diluted combustion in a spark-ignition (SI) gasoline engine which has a high compression ratio. This paper focuses on partial oxidation in an unburned mixture which is observed in the high compression engine and clarifies the effect of partial oxidation in an unburned mixture on the behavior of a flame stretch and the extinction limit. The behavior of the flame stretch was simulated using the detailed chemical kinetics simulation with the opposed-flow flame reactor model. In the simulation, the reactants which have various reaction progress variables were examined to simulate the flame stretch and extinction under the partial oxidation conditions. The mixtures were also diluted by complete combustion products which represent exhaust gas recirculation (EGR). The simulation result shows that low-temperature oxidation (LTO) in reactants extends the extinction limit and mitigates a decrease in flame temperature of the stretched flame. The detailed analysis was also conducted from the viewpoint of molecular diffusion and chemical reactions of the partially oxidized reactants. The result reveals that the extension of the extinction limit for the partially oxidized mixture results from the acceleration of the chemical reactions rather than the diffusion effect. The LTO reactions in a pre-flame zone decompose fuel into smaller molecules before entering a reaction zone, and consequently subsequent reactions accelerate in the reaction zone. The result of sensitivity analysis is also discussed.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".