Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Prediction of Soot Mass and Particle Size in a High-boosted Diesel Engine using Large Eddy Simulation

Detailed Information

Author(E)1) Beini ZHOU, 2) Mahoko Nakatsuka, 3) Juibin Wu, 4) Jin Kusaka
Affiliation(E)1) Waseda Univ, 2) Waseda Univ, 3) Waseda Univ, 4) Waseda Univ
Abstract(E)Soot mass production was investigated in high-boosted diesel engine tests by changing various operating parameters. A mixed timescale subgrid model of large eddy simulation (LES) was applied to simulate the detailed mixture formation, combustion and soot formation influenced by turbulence in diesel engine combustion. The combustion model used a direct integration approach with an explicit ordinary differential equation (ODE) solver and additional parallelization by OpenMP. Soot mass production within a computation cell was determined from a phenomenological soot formation model developed by WASEDA University. The model was combined with the LES code and included the following important steps: particle inception, in which naphthalene was assumed to grow irreversibly to form soot; surface growth with the addition of C2H2; surface oxidation due to OH radicals and O2 attack; particle coagulation; and particle agglomeration. The computational results were compared with experimental data acquired under various EGR conditions. The results showed that the in-cylinder pressure and heat release rate obtained from the engine tests were in good agreement with the calculated values. In the soot emission calculation, the simulated results showed an exponential increase with increasing EGR rate. Furthermore, the steep increase in soot mass with increasing EGR rate from 30% EGR was reproduced. Changes in the soot mass and particle size characteristics with EGR rate were analyzed, and the process and spatial distribution of soot formation were studied.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".