Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

A Method for Determining the Bunsen Coefficient of Bio-Hybrid Fuels

Detailed Information

Author(E)1) Marius Hofmeister, 2) Andris Rambaks, 3) Marcel Rückert, 4) Mathias Grunewald, 5) Manuel Reddemann, 6) Reinhold Kneer, 7) Katharina Schmitz
Affiliation(E)1) Institute for Fluid Power Drives and Sys, 2) Institute for Fluid Power Drives and Sys, 3) Institute for Fluid Power Drives and Sys, 4) Institute of Heat and Mass Transfer, 5) Institute of Heat and Mass Transfer, 6) RWTH Aachen Univ, 7) 0
Abstract(E)Since the amount of dissolved gas in fuels is an important quantity for the description of aeration in injection nozzles, this paper presents Bunsen absorption coefficients for different conventional and bio-hybrid fuels and their effect on nozzle flow phenomena. Bio-hybrid fuels can be produced both on the basis of biomass and with the help of regeneratively generated electrical energy. In contrast to previous work, the Bunsen coefficient was determined for a wide pressure range from approximately 10 MPa to 32.5 MPa. In fact, some of the fuels considered here were never before objects of investigation in terms of their solubility properties. In this work, large differences regarding the Bunsen absorption coefficient between a conventional fuel and a bio-hybrid fuel were observed. For determining the solubility of the fuels, a manometric-volumetric method was used. Based on the measurement results, coefficients for the Krichevsky-Kasarnovsky equation, which describes the pressure dependency of the solubility, were calculated. The mere knowledge of the Bunsen absorption coefficient does not yet allow a statement about the relationship between the amount of dissolved gas and the phenomena of aeration in injection nozzles. In order to investigate this relationship more in detail, a conventional and multiple bio-hybrid fuels were enriched with predefined amounts of nitrogen. Subsequently, the flow within a glass nozzle was observed and recorded with an ultra-high-speed camera to capture the cavitation phenomena. The results show a significant impact of dissolved gas content on cavitation in the injection nozzle.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".