Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Experimental Investigation on Reactivity Controlled Compression Ignition with Oxygenated Alternative Fuel Blends to Reduce Unburned Hydrocarbon Emissions

Detailed Information

Author(E)1) Pushpak Nemade, 2) Anand Krishnasamy
Affiliation(E)1) Indian Institute of Technology Madras, 2) Indian Institute of Technology - Madras
Abstract(E)For controlling oxides of nitrogen (NOx) and particular matter (PM) emissions from diesel engines, various fuel and combustion mode modification strategies are investigated in the past. Low temperature combustion (LTC) is an alternative combustion strategy that reduces NOx and PM emissions through premixed lean combustion. Dual fuel reactivity-controlled compression ignition (RCCI) is a promising LTC strategy with better control over the start and end of combustion because of reactivity and equivalence ratio stratification. However, the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are significantly higher in RCCI, especially at part-load conditions. The present work intends to address this shortcoming by utilizing oxygenated alternative fuels. Considering the limited availability and higher cost, replacing conventional fuels completely with alternative fuels is not feasible. Based on this premise, oxygenated alternative fuel blends, viz. methanol and Karanja biodiesel with 20 vol. % in gasoline and diesel, respectively, is used as a port and direct-injected fuels in RCCI. A light-duty diesel engine used for agricultural water pumping applications is modified to run in RCCI through suitable intake and fuel injection systems modifications. The engine combustion, performance, and exhaust emissions with oxygenated fuel blends are compared with gasoline and diesel as a port and direct-injected reference fuels. The results obtained show that the HC emissions are reduced by up to 44% with oxygenated fuel blends. Further, the indicated thermal efficiency is increased by ~20%, and the indicated specific fuel consumption is reduced by ~10% with oxygenated alternative fuel blends. Overall, fuel-bound oxygen and a much wider reactivity variation with oxygenated alternative fuel blends result in improved combustion efficiency, lower HC emissions, and higher thermal efficiency in RCCI. Thus, oxygenated alternative fuel blends could be a promising option to improve combustion efficiency in RCCI.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".