Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Evaporation Characteristics of Fuels for Low Temperature Combustion Engine Applications

Detailed Information

Author(E)1) Saurabh Kumar Gupta, 2) Anand Krishnasamy
Affiliation(E)1) Tata Motors Limited, 2) Indian Institute of Technology - Madras
Abstract(E)The research on reducing emissions from automotive engines through modifications in the combustion mode and the fuel type is gaining momentum because of the increasing contribution to global warming by the transportation sector. The combustion and emission formation in the advanced low temperature combustion (LTC) engine strategies are susceptible to fuel molecular composition and properties. Ignition timing in LTC strategies is primarily controlled by fuel composition and associated chemical kinetics. Thus, tailoring of fuel properties is required to address the limitations of LTC in terms of lack of control on ignition timing and narrow engine operating load range. Utilizing fuel blends and additives such as nanoparticles is a promising approach to achieving targeted fuel property. An improved understanding of fundamental processes, including fuel evaporation, is required due to its role in fuel-air mixing and emission formation in LTC. In the present work, evaporation characteristics of blends of commercial fuels, viz. gasoline, diesel and alternative fuels, viz. ethanol and butanol are investigated. Further, graphene-based nano additives at 0.05 wt % in gasoline, diesel and butanol are also investigated. There are several research studies available on the evaporation rate characteristics of different fuels under conventional combustion conditions. The present work is intended to understand the evaporation rate behaviour of different fuels under typical LTC conditions. The outcomes of such fundamental studies would allow a careful choice of fuels for LTC engine applications. The important engine fuel properties viz. density, viscosity, surface tension for the test fuel samples are measured following ASTM standard test procedure. The evaporation rate studies are carried out by using the hanging droplet method. The results obtained show that the trends of the changes in gross fuel properties, including density, viscosity and surface tension for the fuel blends, are following the base fuel proportion, while the changes are insignificant with nanoparticle addition. The evaporation rate study reveals that the fuel type strongly influences the changes in fuel evaporation rate, viz. a multi component or single component. Utilizing fuel blends is found to suppress the hydrophilic nature in the case of ethanol. Further, the addition of nanoparticles is found to improve the evaporation rates of fuel blends significantly.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".