Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Optimization of Scallop Design for Cylinder Head of a Multi-Cylinder Diesel Engine for Reduction of Combustion Deck Temperatures and Simultaneously Enhancing Combustion Deck Fatigue Margin

Detailed Information

Author(E)1) Pratik Mahajan, 2) Rajendra Bodake, 3) Anil Thakur
Affiliation(E)1) Cummins India Ltd, 2) Cummins Technologies India Pvt Ltd, 3) Cummins Technology India Limited
Abstract(E)Thermal fatigue crack failure is becoming the most important aspect in modern cylinder head design as modern engines are striving towards higher peak cylinder pressures. Thermal cracks are developed in the cylinder head due to thermal gradients generated because of operating conditions. Paper scope comprises analytical and experimental study on reduction of combustion deck temperature and enhancing combustion deck fatigue margin of a diesel engine through introduction of scallop on the combustion face.
There are methods such as cooling jacket optimization, faceplate insertion, scallops and other measures to reduce the temperatures on the combustion deck. Among these Scallop optimization is selected as a measure to make thermal fatigue crack resistant cylinder head because changing cooling water jacket design will cause change in castings for the cylinder head which may increase the development cost whereas introducing scallop will require just extra machining feature which does not require any major casting design modifications in cylinder head design. Since there is a material removal from the combustion face hence there will be reduction in High cycle fatigue (HCF) strength in water jacket location as well, therefore it is a trade-off between temperature reduction and fatigue strength if scallop is introduced.
Optimum scallop dimensions will be obtained from Design of Experiment (DOE) for reducing temperatures and these should also simultaneously meet the required water jacket HCF fatigue margins. Finite Element Models (FEA) will be calibrated through thermal mapping performed on the cylinder head to increase the accuracy.
Initially, Baseline and concept cylinder head models were analyzed through FEA and models were calibrated by thermal survey performed on both cylinder heads. Water jacket HCF fatigue margins should be reduced as minimum as possible along with reducing combustion deck temperature. Maximum % reduction in water jacket HCF fatigue margin was ~6.5% and combustion deck fatigue margin was enhanced up to 6%.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".