Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

A Simplified Computational Fluid Dynamics Approach for Optimizing a Continuously Variable Transmission Casing

Detailed Information

Author(E)1) Ayush Sharma, 2) Aakrit Mittal, 3) Harshit Tanwar
Affiliation(E)1) Delhi Technological University, 2) Delhi Technological University, 3) Delhi Technological University
Abstract(E)The Continuously Variable Transmission (CVT) is a popular form of automotive transmission that uses friction between a belt and pulley to transmit power. Due to the sliding and other losses associated with the belt, power is lost in the form of heat, which must be dissipated to enhance the belt’s life. The task of heat dissipation is, however, complicated by the use of a CVT casing, which serves to protect the transmission from mud, debris, etc. Consequently, the design of an optimum CVT casing for efficient cooling is a challenging task. Experimental approaches or 3D numerical simulation approaches to tackling such problems are either involved or time-consuming or both. This article discusses a novel and simplified strategy for optimizing a CVT casing for maximum heat removal, using computational fluid dynamics (CFD). The rotating pulleys are approximated as heated, rotating cylinders inside a two-dimensional flow domain of the casing. Transient CFD calculations are carried out on a practical CVT configuration in Ansys® Fluent, using the Shear Stress Transport k-ω turbulence model, for a total of nine different geometrical configurations. The effectiveness of a configuration is judged based on the surface heat flux from the pulleys. The practicality of the proposed approach is verified by a systematic comparison with three-dimensional simulations. It is observed that the simplified two-dimensional methodology can effectively supplant extensive three-dimensional simulations for determining the best CVT casing configuration. The novelty of this study is an emphasis on CVT casing optimization and in the reductionist nature of the simulations which allows for time-efficient transient simulations and simulating the boundary layers effectively. Transient boundary-layer simulations are computationally intensive for 3D simulations and have been neglected in the existing literature. The methodology proposed in this article also aims to provide grounds for further fluid flow research specific to the domain of cooling of continuously variable transmissions.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".