Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Lane Change Decision Algorithm Based on Deep Q Network for Autonomous Vehicles

Detailed Information

Author(E)1) Xianhong Zhang, 2) Xuyang Liu, 3) Xiaoyun Li, 4) Guangqiang Wu
Affiliation(E)1) Science Applications International Corporation, Inc., 2) Tongji University, 3) Science Applications International Corporation, Inc., 4) Tongji University
Abstract(E)For high levels autonomous driving functions, the Decision Layer often takes on more responsibility due to the requirement of facing more diverse and even rare conditions. It is very difficult to accurately find a safe and efficient lane change timing when autonomous vehicles encounter complex traffic flow and need to change lanes. The traditional method based on rules and experiences has the limitation that it is difficult to be taken into account all possible conditions. Therefore, this paper designs a lane-changing decision algorithm based on data-driven and machine learning, and uses the DQN (Deep Q Network) algorithm in Reinforcement Learning to determine the appropriate lane-changing timing and target lane. Firstly, the scene characteristics of the highway are analyzed, the input and output of the decision-making model are designated and the data from the Perception Layer are processed. The DQN network architecture is built, and the reward function is designated considering multi-objective requirements. Then, a virtual scene is built in PreScan, and random factors are added to simulate various scenarios that vehicles might encounter when making lane change decisions. Based on this scenario, the Reinforcement Learning model is trained. Finally, a bench test comparing between the trained Reinforcement Learning model and rule-based model and a real vehicle test on a highway are carried out to verify the effectiveness of the algorithm. By analyzing the results of both bench test and real vehicle test, it can be concluded that the lane-changing decision model based on Reinforcement Learning not only improves driving efficiency but also ensures safety under subjective and objective assessment, and has better adaptability to different working conditions, which is closer to human decision.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".