Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Model in the Loop Control Strategy Evaluation Procedure for an Autonomous Parking Lot Sweeper

Detailed Information

Author(E)1) Johan Fanas Rojas, 2) Yifan Wei, 3) Zachary Asher, 4) Yong Sun
Affiliation(E)1) Isuzu Technical Center of America, Inc., 2) Isuzu Technical Center of America, Inc., 3) Western Michigan University, 4) Isuzu Technical Center of America, Inc.
Abstract(E)A path tracking controller is essential for an autonomous vehicle to navigate a complex environment while avoiding obstacles. Many research studies have proposed new controller designs and strategies. However, it is often unclear which control strategy is the most suitable for a specific Autonomous / ADAS user application. This study proposes a benchmark workflow by comparing different control observer models and their control strategies integration for an autonomous parking lot sweeper in a complex and dense environment at low-speed utilizing model-in-the-loop simulation. The systematic procedure consists of the following steps: (1) vehicle observer model validation (2) control strategy development (3) model-in-the-loop simulation benchmark for specific user scenarios. The kinematic and dynamic vehicle models were used to validate the truck’s behavior using physical data. Various lateral controllers, including Model predictive control (MPC), Linear Quadratic Regulator (LQR), Stanley controller, Pure pursuit, and PID controller, were implemented and tested in the IPG model in the loop (MIL) simulator to determine the best control strategy for the autonomous sweeper. Control effort, trajectory smoothness, cross-track error, heading error, and computation time were used as evaluation metrics to assess the performance of the different controllers. The model validation analysis determined that the dynamic bicycle model best approximates the truck’s dynamics. Simulation results indicate that MPC obtained the lowest control effort and the smoothest trajectory compared to other controllers. The systematic procedure presented in this study effectively determined the control strategy best suited for a parking lot sweeper; nevertheless, it can be applied to establish the control strategy for other applications.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".