Please log in

Paper / Information search system

日本語

ENGLISH

Help

Please log in

  • Summary & Details

Real-Time Simulation of CNG Engine and After-Treatment System Cold Start. Part 2: Tail-Pipe Emissions Prediction Using a Detailed Chemistry Based MOC Model

Detailed Information

Author(E)1) Larisa Leon de Syniawa, 2) Reddy Babu Siddareddy, 3) Johannes Oder, 4) Tim Franken, 5) Vivien Guenther, 6) Hermann Rottengruber, 7) Fabian Mauss
Affiliation(E)1) LOGE AB, 2) LOGE Polska Sp. z o.o., 3) FEV Norddeutschland GmbH, 4) BTU Cottbus-Senftenberg, 5) LOGE AB, 6) Otto-Von-Guericke University Magdeburg, 7) BTU Cottbus-Senftenberg
Abstract(E)In contrast to the currently primarily used liquid fuels (diesel and gasoline), methane (CH4) as a fuel offers a high potential for a significant reduction of greenhouse gas emissions (GHG). This advantage can only be used if tailpipe CH4 emissions are reduced to a minimum, since the GHG impact of CH4 in the atmosphere is higher than that of carbon dioxide (CO2). Three-way catalysts (TWC - stoichiometric combustion) and methane oxidation catalysts (MOC - lean combustion) can be used for post-engine CH4 oxidation. Both technologies allow for a nearly complete CH4 conversion to CO2 and water at sufficiently high exhaust temperatures (above the light-off temperature of the catalysts). However, CH4 combustion is facing a huge challenge with the planned introduction of Euro VII emissions standard, where stricter CH4 emission limits and a decrease of the cold start starting temperatures are discussed.
The aim of the present study is to develop a reliable kinetic catalyst model for MOC conversion prediction in order to optimize the catalyst design in function of engine operation conditions, by combining the outputs from the predicted transient engine simulations as inputs to the catalyst model. Model development and training has been performed using experimental engine test bench data at stoichiometric conditions as well as engine simulation data and is able to reliably predict the major emissions under a broad range of operating conditions. Cold start (-7°C and +20°C) experiments were performed for a simplified worldwide light vehicle test procedure (WLTP) driving cycle using a prototype gas engine together with a MOC. For the catalyst simulations, a 1-D catalytic converter model was used. The model includes detailed gas and surface chemistry that are computed together with catalyst heat up. In a further step, a virtual transient engine cold start cycle is combined with the MOC model to predict tail-pipe emissions at transient operating conditions. This method allows to perform detailed emission investigations in an early stage of engine prototype development.

About search

close

How to use the search box

You can enter up to 5 search conditions. The number of search boxes can be increased or decreased with the "+" and "-" buttons on the right.
If you enter multiple words separated by spaces in one search box, the data that "contains all" of the entered words will be searched (AND search).
Example) X (space) Y → "X and Y (including)"

How to use "AND" and "OR" pull-down

If "AND" is specified, the "contains both" data of the phrase entered in the previous and next search boxes will be searched. If you specify "OR", the data that "contains" any of the words entered in the search boxes before and after is searched.
Example) X AND Y → "X and Y (including)"  X OR Z → "X or Z (including)"
If AND and OR searches are mixed, OR search has priority.
Example) X AND Y OR Z → X AND (Y OR Z)
If AND search and multiple OR search are mixed, OR search has priority.
Example) W AND X OR Y OR Z → W AND (X OR Y OR Z)

How to use the search filters

Use the "search filters" when you want to narrow down the search results, such as when there are too many search results. If you check each item, the search results will be narrowed down to only the data that includes that item.
The number in "()" after each item is the number of data that includes that item.

Search tips

When searching by author name, enter the first and last name separated by a space, such as "Taro Jidosha".