ログインしてください

文献・情報検索システム

日本語

ENGLISH

ヘルプ

ログインしてください

  • 詳細情報

At the Convergence of the Mobility Trends: Eco-Friendly Connected Automated Vehicles (CAV) and the Energy Efficiency of their Perception System

書誌事項

著者(英)1) Mircea Gradu, 2) David Heeren
勤務先(英)1) Velodyne Lidar, 2) Velodyne LiDAR
抄録(英)The four major mobility trends: Electrification, Automation, Connectivity and Ride Sharing drive technological and societal implications, resulting in the emergence of a new ecosystem that could offer faster, cheaper, cleaner, safer, more efficient transportation. Connectivity and Automation capitalize on the merits of the Electrified vehicle platforms.
The potential safety related benefits of Connected Automated Vehicles (CAV) are relatively well quantified and accepted, but there is high uncertainty related to their Energy Consumption and Emissions implications, justifying continuous in-depth analysis. SAE International defined five levels of automation, requiring the vehicle to perform specific Advanced Driver Assist System (ADAS) functionality based on the inputs from a complex sensor suite. The CAV energy and efficiency analysis methodology follows the same general approach as for conventional vehicles but includes several specific aspects.
In a CAV, the sensor suite and compute stack power consumption is an extremely important component of the CAV-Centric intrinsic energy efficiency (HW and SW dependent). The CAV’s perception sensor suite and compute stack perform complex, power intense tasks. Lidar is the primary sensor for the advanced perception functions, influencing the CAV power and energy requirements.
This paper demonstrates that by optimizing the sensor and compute stack power consumption at the system level, a complete sensor suite covering all CAV perception needs can require less wattage than an individual sensor. Model based simulation and control strategies can be applied to all CAV Systems (example engine, transmission, driveline), over various drive cycles and considering the infrastructure. Physics based, deterministic simulation approaches improve calibration and control speed, accuracy, and capture better the dynamics of all CAV systems in transient scenarios.
The standardization of the CAV components and systems offers multiple benefits, including the proper characterization and predictability required for efficient model-based controls. The simulation and control of the electrified CAV require continuous efforts for developing the plant models of the powertrain and perception stack. This paper brings a contribution to these aspects and emphasizes also the long-term benefits resulting from the standardization of validation protocols for the discrete components and overall CAV architecture.

翻訳

検索について

閉じる

検索ボックスの使い方

検索条件は最大5件まで入力可能です。検索ボックスの数は右側の「+」「−」ボタンで増減させることができます。
一つの検索ボックス内に、複数の語句をスペース(全角/半角)区切りで入力した場合、入力した語句の“すべてを含む”データが検索されます(AND検索)。
例)X(スペース)Y →「XかつY(を含む)」

「AND」「OR」プルダウンの使い方

「AND」を指定すると、前後の検索ボックスに入力された語句の“双方を含む”データが検索されます。また、「OR」を指定すると、前後の検索ボックスに入力された語句の“いずれかを含む”データが検索されます。
例)X AND Y →「XかつY(を含む)」  X OR Z →「XまたはZ(を含む)」
AND検索とOR検索が混在する場合は、OR検索が優先されます。
例)X AND Y OR Z → X AND (Y OR Z)
AND検索と複数のOR検索が混在する場合も、OR検索が優先されます。
例)W AND X OR Y OR Z → W AND (X OR Y OR Z)

検索フィルタの使い方

検索結果の件数が多すぎる場合など、さらに絞り込みしたいときに「検索フィルタ」を使います。各項目にチェックを入れると、その項目が含まれるデータのみに検索結果が絞り込まれます。
各項目後ろの「()」内の数字は、その項目が含まれるデータの件数です。

検索のコツ

著者名で検索するときは、「自動車 太郎」のように、姓名をスペースで区切って入力してください。